Protecting TFRC from a Selfish Receiver

Manfred Georg

Sergey Gorinsky

Applied Research Laboratory
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130-4899, USA

{mgeorg, gorinsky}@arl.wustl.edu

Abstract

This paper examines operation of TFRC (TCP-Friendly
Rate Control) in scenarios where the receiver is untrustwor-
thy and can misbehave to receive data at an unfairly high
rate at the expense of competing traffic. Several attacks are
considered for a selfish receiver to take advantage of TFRC.
After confirming experimentally that the identified receiver
attacks are effective, we design Robust TCP-Friendly Rate
Control (RTFRC), a TFRC variant resilient to the attacks.
We also show that additional attacks targeted directly at
RTFRC are unable to compromise the protocol.

1. Introduction

As multimedia applications gain importance in the In-
ternet, providing them with appropriate congestion control
becomes vital to the overall stability of Internet communi-
cations. Unfortunately, traditional TCP (Transmission Con-
trol Protocol) congestion control [1, 11] exhibits two fea-
tures that are detrimental to multimedia applications. First,
the use of retransmissions to provide in-order reliability in-
troduces extra delay, which is undesirable for multimedia.
Second, the high variability of TCP transmission rates over
short timescales undermines human perception of audio and
video. TFRC (TCP-Friendly Rate Control) [4, 10] is a
promising alternative that addresses these concerns. TFRC
offers no support for reliable delivery and transmits data at
smooth rates that remain fair to TCP over long timescales.
In addition to purely unicast communications, TFRC is suc-
cessfully used as a component of overlay systems for mul-
ticast data dissemination, such as Bullet [12].

Whereas multimedia servers have an interest in fair dis-
tribution of offered content to all their clients, an individual
receiver has incentives to maximize its own share of the bot-
tleneck link bitrate. Hence, receivers may misbehave to ob-

tain an unfair share of the network capacity at the expense
of competing traffic. Furthermore, the Internet architecture
contains no safeguards against attacks by a selfish receiver.
In particular, since TFRC has an open-source application-
level implementation [10], it is extremely easy for a selfish
receiver to deviate from the specifications in order to ac-
quire data at an unfairly high rate.

Receiver misbehavior is a problem that is not unique
to TFRC. Savage et al. show how incorrect feedback en-
ables a misbehaving TCP receiver to increase substantially
its throughput at the expense of cross traffic [3, 15]. Pro-
tection of TCP from receiver misbehavior relies on the el-
egant idea of a cumulative nonce: the TCP receiver must
prove in-order delivery of data segments by providing the
sender with XOR values of random numbers (nonces) that
the sender has attached to the data segments.

Due to fundamental differences in the designs of TCP
and TFRC, protecting TFRC against receiver misbehavior
poses new challenges. Since TFRC separates reliability
from congestion control and does not retransmit lost data
segments, the TCP solution of a cumulative nonce is not
directly applicable to TFRC. Also, unlike in TCP where
the receiver sends acknowledgments upon delivery of data
segments, feedback in TFRC is asynchronous from deliv-
ery and includes aggregate information which is difficult to
verify.

In this paper, we first identify and experimentally vali-
date vulnerabilities of TFRC to selfish receiver misbehav-
ior. Then, we propose Robust TCP-Friendly Rate Control
(RTFRC), a TFRC variant that is resilient to the identified
receiver attacks. Our evaluation of RTFRC confirms that the
new design renders the attacks ineffective. The source code
of our application-level RTFRC implementation is made
freely available [7].

The rest of the paper is organized as follows. Sec-
tion 2 describes TFRC. Section 3 presents our threat model
and experimentally demonstrates vulnerabilities of TFRC

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

to selfish receiver misbehavior in a real network. Section 4
derives RTFRC, our robust version of TFRC. Section 5 an-
alyzes the protection offered by RTFRC. Finally, Section 6
provides a summary of the paper.

2. TFRC

TCP cuts its transmission rate at least in half in response
to even a single packet loss. TFRC offers smoother trans-
mission that suits multimedia applications better [4]. To
share the network capacity with TCP cross traffic fairly de-
spite the differences in congestion response, a TFRC con-
nection determines its transmission rate based on the TCP
throughput equation [14]:

S
R 22—”+3~p~tRT0\/3bT”(1+32p2)

where X denotes the fair transmission rate, s is the average
packet size, R represents RTT (round-trip time), tgro de-
notes the retransmission timeout, b is the number of data
packets acknowledged by a single feedback packet, and p is
the loss event rate. A loss event is defined as one or more
packet losses within a single RTT. To avoid undesirable de-
lay added by TCP in-order reliability, TFRC offers no sup-
port for reliable delivery.

The role of the receiver in TFRC is more prominent than
in TCP. To enable the sender to compute the transmission
rate, the receiver measures the loss event rate and reports
it in feedback packets. Feedback also echoes the times-
tamps of data packets, thereby relieving the sender from
storing these values. To understand why TFRC offloads
as much work as possible to the receiver, one should recall
that TFRC emerged in conjunction with TCP-Friendly Mul-
ticast Congestion Control (TFMCC) [17]. Due to the asym-
metry of multicast communications, minimizing the sender
involvement is a rational design choice in TFMCC. Further-
more, trustworthy environments offer no reasons for pick-
ing a different split of responsibilities between the sender
and receiver in the related TFRC.

TFRC feedback comprises four fields: (1) timestamp of
a data packet, (2) time passed since the data packet was de-
livered, (3) loss event rate, and (4) receiver rate, i.e. the
rate of data packet delivery. The receiver rate is reported
to avoid excessive transmission into a congested network:
TFRC limits its transmission to twice the receiver rate.

X

ey

3. Evaluation of TFRC vulnerabilities

While the original TFRC design assumes trustworthy
participants, this assumption of universal trust is no longer
tenable in the Internet. In this section, we relax this assump-

tion and demonstrate that an untrustworthy receiver can ex-
ploit TFRC to acquire data at an unfairly high rate.

3.1. Threat model

Although TFRC trusts the receiver, RFC 3448 admits
that TFRC “may potentially be manipulated by a greedy
receiver that wishes to receive more than its fair share of
network bandwidth. A receiver might do this by claiming to
have received packets that were lost due to congestion” [10].
We explore the possibility of such receiver misbehavior in
more detail. We assume that the only goal of the untrust-
worthy receiver is to acquire its data at an unfairly high rate
at the expense of competing traffic [8, 9]. Our threat model
does not include purely malicious attacks. In particular, we
do not consider denial-of-service attacks where a receiver
congests the network by transmitting spurious packets or
terminates other connections by spoofing their control pack-
ets.

3.2. Experimental methodology

To evaluate vulnerabilities of TFRC to receiver misbe-
havior, we conduct experiments in ONL (Open Network
Laboratory) network testbed built around extensible two-
gigabit routers [2, 13]. ONL enables an experimenter to
configure network parameters such as topology, link ca-
pacities, buffer sizes, and queuing disciplines. We exper-
iment with a simple two-link topology where a link with
capacity 15 Mbps is followed by a bottleneck link with
capacity 7.54 Mbps. All link buffers are FIFO (First-In
First-Out) and Droptail. Link buffer sizes are configured
to accommodate 88.4 KB of IP data, which is equivalent to
about sixty 1500-byte IP datagrams. Each experiment in-
volves seven parallel connections between a pair of hosts.
Of the seven connections, five are TCP NewReno [6], an-
other is well-behaving TFRC, and the last one is TFRC
with a misbehaving receiver. Instead of using the standard
TFRC implementation [5], we implement TFRC to be con-
sistent with our code for RTFRC [7]. This choice elim-
inates implementation-specific differences between TFRC
and RTFRC in our experimental results.

We deviate from common simulation setups by using
natural propagation delays, which are very small in ONL.
However, our buffer sizes are selected so that the queuing
delay at the bottleneck link is at least 48 ms after initial con-
vergence; this is roughly equivalent to having a configura-
tion with 48 ms link propagation delay and a bitrate-delay-
product buffer. In future extensions of this work, we plan
to emulate larger propagation delays explicitly at network
nodes.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

6
T

—— TFRC 1
— TFRC 2
fair rate

5
T

4

Throughput (Mbps)
2 3

1

o

| | | |
100 110 120 130 140

Time (seconds)

Figure 1. Exploit of the loss event rate
3.3. Assessment of specific attacks

Based on the TFRC feedback format, we identify and
evaluate three types of attacks where the receiver manip-
ulates the loss event rate, RTT calculations, and reported
receiver rate respectively.

Manipulating the loss event rate is the most direct and
brutal assault on TFRC. By underreporting the loss event
rate, a misbehaving receiver can easily deceive the sender
into transmitting at an unfairly high rate. The misbehav-
ior can be implemented by changing a single line of the
TFRC code. Figure 1 shows an instance of the attack.
Both displayed connections adhere to TFRC until 120 sec-
onds into the experiment and transmit at close-to-fair rates.
After 120 seconds, the receiver of one TFRC connection
misrepresents the loss event rate by reporting a value that
is 32 times smaller than the actual rate. The graphs con-
firm that the misbehaving receiver succeeds in boosting the
transmission rate of its connection, mostly at the expense
of the five parallel TCP connections. After the misbehavior
starts, the packet loss rate changes from 1.13% to 1.5% and
from 3.23% to 5.97% for the well-behaving and misbehav-
ing TFRC connections respectively.

Manipulating RTT calculations is another potent way
to deceive the sender. The sender computes RTT based
on the echoed timestamp and #,4./4y, Which is the delay be-
tween arrival of a data packet to the receiver and departure
of the feedback packet. The receiver can abuse both fields to
trick the sender into underestimating RTT and consequently
transmitting at an unfairly high rate. A side effect of de-
creasing the RTT estimate is a lower sender timeout value.
A misbehaving receiver can easily avoid undesirable time-
outs by sending its feedback more frequently in accordance
to the lowered RTT estimate. Since the TFRC sender ex-
plicitly tells its RTT estimate to the receiver, the receiver
can precisely control calculations at the sender. However,
the receiver should exercise care in not deflating the RTT
estimate too much: behavior of the sender under a nega-
tive RTT estimate is not specified by TFRC and depends

6
I

—— TFRC 1
TFRC 2
fair rate

5
T

4

Throughput (Mbps)
2 3

1

oLl | |
100 110 120 130 140
Time (seconds)

Figure 2. Exploit of RTT calculations

on the implementation. Figure 2 shows an attack where
the receiver distorts RTT calculations by overstating Zge/qy-
The misbehavior starts 120 seconds into the experiment and
results in an RTT estimate that is one fourth of the actual
value. Once again, the receiver increases the transmission
rate of its TFRC connection at the expense of the five par-
allel TCP connections. After the misbehavior starts, the
packet loss rate changes from 1.06% to 1.99% and from
3.92% to 5.64% for the well-behaving and misbehaving
TFRC connections respectively.

Manipulating the receiver rate allows the receiver to
circumvent the limit imposed by the sender on the trans-
mission rate. The receiver can use this attack to increase the
transmission rate acceleration during slow start, under mas-
sive losses, and after quiescent periods. In our experiments,
we were unable to translate potential transient benefits from
manipulating the receiver rate into any noticeable long-term
advantage for a misbehaving receiver.

4. Robust TFRC

Section 3 demonstrated vulnerabilities of TFRC to re-
ceiver misbehavior. We now enhance the protocol to make it
resilient to the identified attacks. Our Robust TCP-Friendly
Rate Control (RTFRC) combines two ideas to provide this
protection: computations are shifted from the receiver to
the sender, and feedback is verified at the sender. Below,
we discuss in detail how RTFRC applies these ideas.

4.1. Protecting the loss event rate

An intuitive way to protect TFRC from manipulations
of the loss event rate is to verify correctness of receiver re-
ports at the sender. However, verifying the loss event rate
is difficult both due to the complex definition and aggregate
nature of the loss event rate. Instead, we move the compu-
tation of the loss event rate from the receiver to the sender,
which is an option mentioned in RFC 3448 [10]. Under our
assumption of an untrustworthy receiver, this new split of

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

sequence number ACKed sequence number ACKed sequence number
RTT estimate out-of-order sequence number 1 bitmask start sequence number
nonce F nonce reset out-of-order sequence number 2 t’]%nmgﬁk nonce ‘
payload out-of-order sequence number 3 bitmask
nonce
(a) Data packet (b) Normal ACK (¢) Bitmask ACK

Figure 3. Packet header formats in RTFRC

responsibilities has substantial advantages in terms of de-
sign simplicity.

With the sender computing the loss event rate, the chal-
lenge shifts to enabling the sender to verify whether the re-
ceiver has received a particular data packet. To achieve this
goal, we design a cumulative nonce mechanism similar to
those used for robust TCP [3, 15, 16]. Specifically, since
TFRC does not support reliable in-order delivery, we adopt
a scheme that works despite loss of nonces [16]. Hence, we
allow a cumulative nonce to confirm a data range that is not
necessarily contiguous or aligned with the beginning of the
message.

Adding nonces leads to different packet formats in
RTFRC. Figure 3a shows the format of RTFRC data pack-
ets. The header is simple and includes only a sequence
number, RTT estimate, packet nonce, and nonce reset flag.
RTFRC uses two types of acknowledgment (ACK) packets.
As Figure 3b shows, normal ACKs contain sequence num-
bers for up to three data segments received out of order.
These fields enable accurate computation of RTT despite
potential packet reordering in the network. A normal ACK
also reports a cumulative nonce ensuring that the receiver
cannot conceal loss of a data packet. When recovering from
loss events, RTFRC uses bitmask ACKs. To acknowledge a
noncontiguous range of data, a bitmask ACK specifies the
beginning and length of the range as well as a bit vector
identifying the data packets that the receiver has obtained
within the range. As Figure 3c shows, the bitmask ACK
also reports the cumulative nonce for the packets received
from the new range. In adherence to RFC 3448, our nonce
scheme preserves the definition of a loss event as one or
more packet losses within a single RTT. Furthermore, the
scheme helps the sender to determine the receiver rate ac-
curately even when congestion prevents the receiver from
obtaining all data packets.

We also introduce a mechanism enabling the sender to
reset the cumulative nonce explicitly. When the sender
learns of a loss event, the sender puts a new nonce and sets
the nonce reset flag in the header of the next data packet. Af-
ter the packet arrives, the receiver has to consider the packet
as the beginning of a new data range for feedback purposes.

When suggesting a sender-based variant of TFRC,
RFC 3448 argues for feedback via a reliable delivery mech-

anism. We believe that adding a reliable feedback channel
is an unnecessary burden. Therefore, RTFRC does not use
retransmissions or correction codes for its feedback. Our
experience shows that incorrect inference of loss events due
to loss of feedback packets does not disrupt RTFRC perfor-
mance.

4.2. Protecting RTT calculations

A misbehaving receiver can manipulate RTT calcula-
tions in TFRC by modifying the timestamp of a data packet
or by overstating f4e;qy. To fend off the first type of attack,
the sender stores timestamps locally instead of transmitting
them to be echoed by the receiver. To protect against the
second type of manipulation, we also eliminate the #4./4y
field from feedback by requiring the receiver to send a feed-
back packet only in immediate response to a data packet.

4.3. Protecting the receiver rate

Although our experiments do not confirm that a mis-
behaving receiver can gain any long-term advantage from
manipulating the receiver rate, it is prudent to fix vulnera-
bilities before successful exploits are discovered. Luckily,
protecting the receiver rate in RTFRC does not require ex-
tra communication: our mechanism for protecting the loss
event rate provides the sender with sufficient information
to compute the receiver rate in a straightforward and robust
manner. Thus, we also move the computation of the receiver
rate to the sender.

4.4. Summary of new design features

The main difference between TFRC and RTFRC lies in
shifting the computation of the loss event rate and receiver
rate from the receiver to the sender as well as in using a cu-
mulative nonce over a potentially noncontiguous data range
to verify feedback. Consequently, RTFRC has different for-
mats for packet headers.

Minor changes include a reduction of the sender time-
out value from 4 RTT to 2.5 RTT, providing RTFRC with
a tighter control loop. The smaller timeout value reduces

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

13

r —— Normal/ Normal
I —— Normal / Thick
- -~ Thick / Normal ;

11
T T T T

9

5

Number of Experiments
3 7

01

0.4 0.5 0.67 1.0 1.5 2.0 25
Throughput Ratio

Figure 4. Thick feedback attack

the amount of delay that a misbehaving receiver can im-
pose on feedback without causing a timeout. The particu-
lar value of 2.5 RTT is chosen to avoid spurious timeouts.
The timeout value should be at least 2 RTT to tolerate loss
of a single feedback packet. Furthermore, the timeout value
should be large enough to cover variations in RTT. For envi-
ronments with small propagation delays, variations in RTT
can be comparatively large; adding a small constant (e.g.
10 ms) to the timeout value effectively eliminates spurious
timeouts in such situations. Since adding a small constant
does not undermine the robustness of RTFRC when propa-
gation delays are large, we recommend this as a general rule
for setting the sender timeout value in RTFRC.

5. Analysis of RTFRC resilience

In this section, we assess resilience of RTFRC to receiver
misbehavior. Since RTFRC is made robust against the ear-
lier presented attacks by its design, we now focus on new
RTFRC-specific attacks.

5.1. Nonce guessing

Our nonce scheme prevents the receiver from concealing
a loss event. Although the receiver can attempt to guess
a nonce, the probability of guessing the nonce correctly
equals 1/2° where b is the nonce size in bits. The proba-
bility is small even for small values of b. Furthermore, to
provide the receiver with a disincentive for nonce guessing,
RTFRC gives a sender the option of terminating the connec-
tion if the receiver submits an incorrect nonce.

5.2. Thick feedback

Sending feedback at a higher rate presents a potential op-
portunity for increasing the data transmission rate. For ex-
ample, since the sender doubles its transmission rate every
RTT during slow start, more frequent feedback can increase
the acceleration of transmission rate.

To evaluate whether and how thick feedback affects
RTFRC throughput, we conduct ONL experiments with
two RTFRC connections that run in parallel with five TCP
NewReno connections. We examine three experimental
configurations. In the first, both RTFRC connections pro-
vide feedback at the standard rate of one packet per RTT.
In the second and third configurations, one RTFRC connec-
tion sends feedback at four times the normal rate while the
other uses the standard feedback rate. The difference be-
tween the last two configurations is the order in which the
normal-feedback and thick-feedback connections start. For
each configuration, we repeat the experiment 13 times.

Figure 4 presents the ratio of steady-state throughputs
of the earlier and later RTFRC connections. As with TFRC,
the steady-state throughputin RTFRC depends on the initial
state. When the thick-feedback connection starts after the
normal-feedback connection, the throughput ratio is statis-
tically similar to the results for the first configuration where
both RTFRC connections send feedback at the normal rate.
However, when the thick-feedback connection starts earlier,
it acquires a smaller share of the bottleneck link capacity in
the steady state, thereby punishing itself. In general, adop-
tion of thick feedback tends to bring the throughput ratio
closer to one. Therefore, thick feedback does not enable the
RTFRC receiver to boost its network capacity consumption
unfairly at the expense of well-behaving cross traffic.

5.3. Feedback timing

Thick feedback belongs to a larger class of attacks where
the receiver violates feedback procedures, by sending spu-
rious feedback packets, changing feedback timing, or not
providing feedback at all. Although similar attacks can be
targeted at TFRC, we discuss them in the context of RTFRC
because a misbehaving TFRC receiver has easier means to
manipulate the sender and thus lacks incentives for launch-
ing these less effective attacks.

RTFRC is immune to some feedback-timing attacks by
its design. For example, nonce-based verification of feed-
back neutralizes early feedback that tries to confirm data
that has not yet been delivered. Delaying or withholding
feedback about packet losses allows the receiver to post-
pone the loss detection at the sender. Such loss concealment
is only temporary since the sender times out if no feedback
is provided. Furthermore, its short-term benefits are mit-
igated by the smoothness of RTFRC transmission. Addi-
tionally, delayed feedback inflates the RTT estimate at the
sender and thereby further decreases the transmission rate;
this detrimental effect offers a strong disincentive against
the attack.

In connections where RTT varies a lot, more frequent
feedback during low-RTT intervals and less frequent feed-
back during high-RTT intervals can decrease the sender

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

RTT estimate because the sender computes the estimate as
a weighted moving average. In its turn, the deflated RTT
estimate yields a higher transmission rate. To launch this at-
tack, the receiver needs to track the RTT estimate reported
by the sender in data packets. Also, the receiver needs to
be sufficiently precise in estimating the true RTT and suf-
ficiently prompt in adjusting the feedback frequency; the

(7]
(8]

(9]

M. Georg. Robust TCP-Friendly Rate Control Implementa-
tion. http://www.arl.wustl.edu/~mgeorg/rtfrc/, May 2005.
S. Gorinsky, S. Jain, and H. Vin. Multicast Congestion Con-
trol with Distrusted Receivers. In Proceedings NGC 2002,
October 2002.

S. Gorinsky, S. Jain, H. Vin, and Y. Zhang. Robustness to
Inflated Subscription in Multicast Congestion Control. In
Proceedings ACM SIGCOMM 2003, August 2003.

last two constraints appear to be difficult. In general, the [10] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP
selfish receiver in our RTFRC experiments were not able to Friendly Rate Control (TFRC): Protocol Specification. RFC
translate any temporary advantages from feedback-timing 3448, January 2003.
attacks into tangible long-term benefits. [11] V. Jacobson. Congestion Avoidance and Control. In Pro-
ceedings ACM SIGCOMM 1988, August 1988.
6. Conclusion [12] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bul-
* let: High Bandwidth Data Dissemination Using an Overlay
Mesh. In 19th ACM Symposium on Operating System Prin-
This paper investigated operation of TFRC in scenarios ciples (SOSP 2003), October 2003.
where the receiver is untrustworthy and can misbehave to [13] Open Network Laboratory. http://onl.arl.wustl.edu/, May
receive data at an unfairly high rate at the expense of com- 2005.
peting traffic. We identified and experimentally demon- [14] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
strated vulnerabilities of TFRC to a selfish receiver’s mis- TCP Throughput: A Simple Model and its Empirical Vali-
behavior. Then, we designed Robust TCP-Friendly Rate ?gtglgn. In Proceedings ACM SIGCOMM 1998, September
ConFrol (RTFRC), a TFRC variant res1her'1t' to the identified [15] S.Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP
receiver attacks. We also showed that additional attacks tar-
; . Congestion Control with a Misbehaving Receiver. Computer
geted directly at RTFRC are unable to compromise the pro- Communication Review, 29(5):71-78, October 1999.
tocol. [16] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Con-
gestion Notification (ECN) Signaling with Nonces. RFC
Acknowledgments 3540, June 2003.
[17] J. Widmer and M. Handley. Extending Equation-Based Con-

We would like to thank Michael Wilson for stimulat-
ing discussions over the design of RTFRC, Hariharan Iyer
for invaluable help in analyzing data, and the anonymous
ICAS/ICNS 2005 reviewer for detailed and insightful com-
ments.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion

Control. RFC 2581, April 1999.
[2] S. Choi, J. Dehart, R. Keller, F. Kuhns, J. Lockwood,

P. Pappu, J. Parwatikar, W. D. Richard, E. Spitznagel,
D. Taylor, J. Turner, and K. Wong. Design of a High Per-
formance Dynamically Extensible Router. In DARPA Active

Networks Conference and Exposition, May 2002.
[3] D.Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson.

Robust Congestion Signaling. In Proceedings IEEE ICNP

2001, November 2001.
[4] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-

Based Congestion Control for Unicast Applications. In SIG-

COMM 2000, pages 43-56, August 2000.
[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer.

TFRC, Equation-based Congestion Control for Unicast Ap-
plications: ~Simulation Scripts and Experimental Code.
http://www.aciri.org/tfrc/, February 2000.

[6] S.Floyd, T. Henderson, and A. Gurtov. The NewReno Mod-
ification to TCP’s Fast Recovery Algorithm. RFC 3782,
April 2004.

gestion Control to Multicast Applications. In Proceedings
ACM SIGCOMM 2001, August 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems
and International Conference on Networking and Services (ICAS/ICNS 2005)

0-7695-2450-8/05 $20.00 © 2005 IEEE

