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Abstract — Congestion control in the Internet relies on switches to the congestion avoidance mode and adjusts the load
binary adjustment algorithms. For example, Transmis- similarly to Additive-Increase Multiplicative-Decreas&iID)
sion Control Protocol (TCP) in its congestion avoidance algorithm [4]. The choice oAIMD is supposed to provide sta-
mode behaves similarly to Additive-Increase Multiplicative- bility, i.e., convergence to fair efficient states.
Decrease AIMD) algorithm. Chiu and Jain offer a theo-
retical justification for choosing AIMD: among stable lin-
ear algorithms, AIMD ensures the quickest convergence to
maxmin-fair states. Whereas Chiu-Jain model rests on
a well-known unrealistic assumption of uniform feedback,
more precise analytic characterizations offCP behavior are
developed and validated. In particular, the advanced the-
ory and experiments agree thatfCP congestion control does
not converge to maxmin fairness. However, despite the re-
cent progress inTCP feedback modeling, it is still common
to use Chiu-Jain model for comparison of binary adjust-
ment algorithms. This paper argues against such practice.
We provide evidence that due to the incorrect assumption of
uniform feedback, Chiu-Jain model is not suitable for trust-
worthy conclusions about properties of an adjustment al- While reliance ofTCP on AIMD does not attain the original
gorithm. We emphasize that until algorithms are analyzed goal of convergence to maxmin fairness, it is logical to reex-
with a more realistic feedback model, optimal choice of a amine the presumed superiority 8iVD over alternative algo-
binary adjustment algorithm will remain an open problem. rithms. In fact, new algorithms have been proposed to improve

upon various features @filMD congestion control [3], [7], [8],
[9]. However, despite the recent advancesTaP feedback
|. INTRODUCTION modeling, itis still common to use Chiu-Jain model for compar-

In such a complex distributed system as the Internet, it is éﬁP” of binary adjustment algorithms. This paper argues against

but impossible to provide each user with an exact up-to-dastECh practice. We provide evidence that due to the incorrect as-
value for its fair and efficient load on the network. Instea umption of uniform feedback, Chiu-Jain model is not suitable

users control congestion wittinary adjustment algorithmsa or trustworthy conclusions about properties of an adjustment

user adjusts its load in response to binary signals that indicfﬂﬁ;mhm' In particular, we show that albeit the scalaiD

whether the user must decrease or can increase the load. Fo t_lttlpltlllcatlv%—lncre_?se l\:clult(ljpgm;:l\l\/ﬂelsl?jecrease) algortlthfm_ IS
ample, Transmission Control ProtocalqP) exercises binary not stable under unitorm feedbacdi o€s converge fo fair

congestion control — th&CP sender steps up its transmissior?tates under the more realistic assumption of proportional neg-

after receiving a new acknowledgment; the sender reducesaﬁgle feedback. Our_flndlngs suggest that unt_ll algorltr_\ms are
load upon a retransmission timeout or after receiving three cgpalyzed_wnh a reallstu_: feedt_Jack quel, optimal choice of a
plicate acknowledgments [1], [5]. Until the first indication o nary adjustment algorithm will remain an open problem.
congestion, eachCP connection raises its load in a manner re- The rest of our paper is structured as follows. Section Il dis-
sembling the Multiplicative-Increase/() algorithm [4]. This cusses the issue of stability. Section Il examines the speed of
reliance onMI is supposed to enable quick convergence to efenvergence to fair states. Section IV studies the impact of dif-
ficient states. Once efficiency is achieved, Ti@® connection ferentRTTs. Finally, Section V sums up our conclusions.

Chiu and Jain provide a theoretical justification for favoring
AIMD: according to their analysis of linear adjustment algo-
rithms for a simple feedback mode{JMD yields the quickest
convergence to maxmin-fair states [4]. For simplicity, Chiu-
Jain model assumesmiform feedback all users receive iden-
tical feedback. In reality however, the probability to receive a
congestion indication is higher for the user with a larger load.
Subsequent analytical studies TEP congestion control rep-
resent feedback more realistically and predict the transmission
rate for aTCP connection more accurately [2], [10], [12], [13].
Furthermore, experiments and more realistic models pith
portional negative feedbacigree that bandwidth allocation un-
derTCP does not converge to maxmin fairness [13], [16].
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Figure 1: Stability of LIMD in Chiu-Jain model wherea; = 1, by = 1.1, bp = 0.85, Xg0a = 30, n = 2, z1(0) = 10, and

Il. STABILITY

In Chiu-Jain model, the network is a single bottleneck link Ft) = ( ()
shared by cooperative users [4]. The model assumes that all n )
users have the san®8 T and adjust their loads simultaneously. " Z (3 (1))
Consequently, the model employs a discrete timescale where
every instantt corresponds to the moment when each user According to Chiu-Jain analysis, a linear algorithm for bi-
adjusts its load ta:;(t). The network provides the users withnary adjustments should belong to the followlniyD (Linear-
a binary feedbaclk(t) which indicates whether the total loadincrease Multiplicative-Decrease) class in order to converge to
X(t — 1) after the previous adjustment exceeds an optimir efficient states:

value Xgoq1: PROPOSITION 1. To make a linear adjustment algorithm

stable, its decrease policghould be multiplicative, and its
increase policyshould have an additive component anthy

have a multiplicative component:

1 i X(E-1) > Xgoan,
y(t)—{o it X(E—1) < X (1)

ar>0, by >1, ap=0, 0<bp < 1. 5
whereX (¢) is the combined load of all users at time: ! ! P P ®)
After convergence to efficiency, the total load undéviD
- oscillates within the following tight bounds:
X(t) = Zl‘i(f)- 2
=1

bDXgoal < X(t) < nar + bIXgoal~ (6)

Note that the model assumaniform feedback- all the users

receive the same feedbagkt). The users have no access to Proposition 1 has an intuitive explanation: multiplicative ad-
other external information inciudin;g X or X(t—1) justments (both decreases and increases) do not affect the fair-
y goals - .

Chiu and Jain perform a static analvsis for the following cla ness index while additive increases enhance it. Consequently,
. . P : ] y 9¢a3%vp algorithms monotonically raise the fairness index to its
of linear adjustment algorithms: .
optimal value of 1.

o ar+ bt —1) if y(t)
wn)={ ey it -

ExampLE 1. Figure 1 illustrates the behavior of thaMD
algorithm witha; = 1, by = 1.1, andbp = 0.85 in the net-
work that has the optimal load of .., = 30 and serves two
whereay, by, ap, andbp are real constants. users with the initial loads of;(0) = 10 and z3(0) = 0.

The criteria for choosing an appropriate algorithm include ifBhe state diagram in Figure la represents concurrent loads of
stability: from any initial state, load:;(¢) of each usei must the users as points in a 2-dimensional space: the efficiency line
converge towards the efficient and fair amounf@f,.;/n. To corresponds to the efficient states whar&) = X .., and the
quantify fairness, Chiu and Jain use indég) from [6]: fairness line denotes the fair states whetdt) = z2(t). The
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LIMD algorithm converges to the intersection of these two lines,  |ll. SPEED OFCONVERGENCE TOFAIR STATES

i.e., to the fair efficient state characterized by(t) = z5(t) = Chiu and Jain show thamoothnesgmeasured as the size of
Xgoar/2. Figure 1b tracks the fairness index for the traversegscillations in the total load) an@sponsivenes@neasured as
states. time of convergence to efficient states) conflict: any attempt to

In Chiu-Jain model, AIAD (Additive-Increase Additive- changea,, by, or bp to improve smoothness worsens respon-
Decrease) and/IMD (Multiplicative-Increase Multiplicative- Siveness, and vice versa. Conceding this trade-off between re-
Decrease) algorithms do not converge to fair states. Their Bponsiveness and smoothness, [4] examinesyeed of con-
stability however is due to the assumption of uniform feedbackergence to fair statesAfter proving that a single increase un-
since such feedback does not contain information about fafter LIMD boosts the fairness index the most witgn= 1, [4]
ness, convergence to fair states requires different functions é@ncludes with:

increase and decrease. PROPOSITION 2. To provide the quickest convergence to

Under the more realistic assumption of proportional negatiyg, siates arIMD algorithm should have an additive increase
feedback, a user with a larger load receives congestion 'nd'fﬂicy and a multiplicative decrease policy:
tions more frequently. Thus, proportional negative feedback re-
flects fairness and thereby facilitates convergence to fair states. ar >0, by =1, 0<bp < 1. (8)
In comparison to uniform feedback, proportional negative feed- ) . )
back yields a wider class of stable adjustment algorithms. For”S the following example shows, Proposition 2 is not com-
example, Venkitaraman et al argue tAD converges to fair PIEtely correct. After a sequence of adjustments)D with
states under proportional negative feedback [15]. Below, e > 1 can raise the fairness index higher tierID.
show thatMIMD has the same property. EXAMPLE 2. Let the network haveX,,,; = 10 and two
Consider a synchronowsiMD-controlled network with pro- ysers with the initial loads af, (0) = 7 andz,(0) = 0. Con-
portional negative feedback. Lef andr; be the number of sider AIMD with a; = 1.1, bp = 0.5 andLIMD with a; = 1,
congestion indications received respectively by useasdj j, — 1.02, b, = 0.5. According to (6), these algorithms have
during interval[0, t]. At time ¢, loads of the users become:  the same smoothness. Due to the largeyb; ratio, AIMD
2i(t) = bRbt "2y(0) and z;(t) = b3bL a5 (0).  (7) 'raises the fairngss inde>§ higher thamvD after th'e first ad-
O justment (as Chiu and Jain prove). However as Figure 2 shows,
If z;(t) > 2;(t) during interval[0,], then due to propor- | ;v rajses the fairness index higher thamvD after the se-

tional negative feedback we hawvg> r; and: quence of six adjustments.
zi(t) WhenLIMD improves the fairness index quicker, either the
z;(t) gained advantage is not significant&MD reaches the same
= {(7)} level of fairness after a small number of additional adjustments.
Byby " (0) Thus, despite the occasionally suboptimal speetD does

yield the quickest, or at least compatible, overall convergence

bpbr ;(0) to fair states in Chiu-Jain model.

(bp)”_rj z;(0)

b1 z;(0) AIMD
< {0<bp<1,b>1,andr; >r;} oo | s .

- (0) e

z;(0) $ o8l ]
Therefore, theMiMD-controlled network converges toward the z
fair states where; (t) = z;(t). € o7l A v ]

Stability of MIMD under proportional negative feedback &

makes this algorithm a viable alternativedio/D becauséiMD
and other algorithms with additive components are not scalable. 06| 1
As (6) shows for Chiu-Jain model, oscillations of the total load
after convergence undarMD grow linearly in size as the num- 0.5 1 2 3 “l 5 5
ber of users increases. Morris confirms experimentally that the time

average loss rate grows linearly with the number of competing

TCP connections and thereby worsersP performance [11]. Figure 2: Speed of convergence to fair states underiMD

On the other handylIMD congestion control is scalable sincewith a; = 1, by = 1.02, bp = 0.5 and under AIMD with a; =

the size of the total load oscillations after convergence undet, bp = 0.5 in Chiu-Jain model wheren = 2, X4, = 10,
MIMD does not depend on the number of users. Consequently{0) = 7, and z>(0) = 0.

it is possible to design such amMD-controlled network with

ECN-style packet marking [14] that traffic in steady loaded As Section Il shows, the unrealistic assumption of uniform
states always oscillates within the buffer of a bottleneck linleedback affects conclusions about stability. Let us now exam-
and keeps the link fully utilized without losing packets. ine whether Chiu-Jain model yields reliable conclusions about



the speed of convergence to fair states. Considemamcon-

nections that havBTT of 100 ms, use 500 B packets and share ‘ ‘ " firstuser - 1

a 100 Mb/s bottleneck link. Let the second connection start | second user

when the first one utilizes the entire bottleneck. Then, the new 100 t
connection surpasses its slow-start phase and switches immedi-
ately to the congestion avoidance mode. Chiu-Jain model rep-,
resents this scenario as amvD-controlled network with two S 6o |
usersar = 1, bp = 0.5, Xgoa = 2500, z1(0) = Xg0a, and
x2(0) = 0. In this model, the second user reaches its fair share ;
of X,0q1/2 only after 27546 adjustments which translates into 20
45 minutes of real time.
However according to experiments witltP in the same set- o 200 200 600 800 1000
tings, the newrCP connection receives congestion indications time
less frequently and reaches its fair bandwidth share substan- (&) convergence from the fair inefficient state

tially quicker than predicted by Chiu-Jain model with its uni-

form feedback. Thus, proportionality of negative feedback ac- T ‘ ‘ " firstuser - 1
celerates the convergence to fair states more significantly than S ioad
the choice ofAIMD over other.IMD algorithms. 100 ¢ : =

80

IV. DIFFERENTROUND-TRIP TIMES

Since bandwidth allocation und&CP depends on round-
trip times [13], [16], it is interesting to examine a version of 40 1
Chiu-Jain model where users can have differemrs. Our AT
asynchronous extension adds two parametgasid f; to Chiu- 20 |
Jain model:d; represents delay from uséto the bottleneck 0 ‘ ‘ ‘ ‘
link while f; denotes delay from the bottleneck link to the user. 0 200 400 600 800 1000

. time
Thus,RTT for user: equalsd; + f;. (b) convergence from the unfair efficient state
Taking the feedback delays into account, the asynchronous

model redefines the total load on the network at tims: 120

load

60

" from the fair inefficient state -~

from the unfair efficient state --+--
X(t) = Z zi(t — d;) ©) 100 efficiency line
i=1 fairness ling -----

fair efficient state =
wherez;(t — d;) refers to the load of usérat timet — d;. 80 |
Similarly to the original model, the total load alone deter-

mines feedback at timge

1 if X(t) > Xyoal,
y(®) :{ 0 i X() < Xoo (10)

60 r

40t

' load of the second user

Let us now examine the network behavior when each user em o0
ploysAIMD to adjust its load once per i&TT:

- _Jartm(t—di— fi) iyt - fi) =0,

ExaMPLE 3. Consider anAlMD-controlled network with

two usersg; = 1, bp = 0.9, X400 = 100, and differenRTTs. . . S .
: _ B Figure 3: AIMD behavior in the asynchronous version of
The first user haRTT of 8 (formed byl; =4 and f; = 4). RTT Chiu-Jain model wherea; = 1, bp = 0.9, 1 = 2, Xyout =

for the second user is four times shorter and equals 2 (con- _ _
sisting ofd, = 1 and f, = 1). Figure 3 presents the networkPOO’ di=4fi=4d=Landf, =1
behavior for two sets of initial conditions.

When the users have the initial loads of(0) = 0 and In addition to the lack of convergence to maxmin fairness,
x2(0) = 0, the network converges from this fair inefficient statthe above example illustrates the following two properties of
to steady states where the second user imposes a larger l@asiD in this asynchronous model:
than the first user. If the network starts at the unfair efficient 1) AMD is sensitive to initial conditions and has multiple
state with the initial loads of1(0) = 100 andz2(0) = 0, the attractors.

relationship is reverse: after convergence to steady states, the) After convergence undexIMD to steady states, users
second user settles at a smaller load than the first user. with longerRTTs can maintaittarger loads.

load of the first user
(c) state diagram



These properties contradict both Chiu-Jain model and moreThe aggregate of the above arguments leads us to the con-
realistic models with proportional negative feedback. To umiusion that until algorithms are analyzed with a more realistic
derstand the reason for the contradictions, let us return to Bgedback model, optimal choice of a binary adjustment algo-
ample 3 and compare frequencies of negative feedback for dithm will remain an open problem.
ferent users after the users converge to steady states. In the
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