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Abstract – Congestion control in the Internet relies on
binary adjustment algorithms. For example, Transmis-
sion Control Protocol (TCP) in its congestion avoidance
mode behaves similarly to Additive-Increase Multiplicative-
Decrease (AIMD) algorithm. Chiu and Jain offer a theo-
retical justification for choosing AIMD: among stable lin-
ear algorithms, AIMD ensures the quickest convergence to
maxmin-fair states. Whereas Chiu-Jain model rests on
a well-known unrealistic assumption of uniform feedback,
more precise analytic characterizations ofTCP behavior are
developed and validated. In particular, the advanced the-
ory and experiments agree thatTCP congestion control does
not converge to maxmin fairness. However, despite the re-
cent progress inTCP feedback modeling, it is still common
to use Chiu-Jain model for comparison of binary adjust-
ment algorithms. This paper argues against such practice.
We provide evidence that due to the incorrect assumption of
uniform feedback, Chiu-Jain model is not suitable for trust-
worthy conclusions about properties of an adjustment al-
gorithm. We emphasize that until algorithms are analyzed
with a more realistic feedback model, optimal choice of a
binary adjustment algorithm will remain an open problem.

I. I NTRODUCTION

In such a complex distributed system as the Internet, it is all
but impossible to provide each user with an exact up-to-date
value for its fair and efficient load on the network. Instead,
users control congestion withbinary adjustment algorithms: a
user adjusts its load in response to binary signals that indicate
whether the user must decrease or can increase the load. For ex-
ample, Transmission Control Protocol (TCP) exercises binary
congestion control – theTCP sender steps up its transmission
after receiving a new acknowledgment; the sender reduces its
load upon a retransmission timeout or after receiving three du-
plicate acknowledgments [1], [5]. Until the first indication of
congestion, eachTCP connection raises its load in a manner re-
sembling the Multiplicative-Increase (MI) algorithm [4]. This
reliance onMI is supposed to enable quick convergence to ef-
ficient states. Once efficiency is achieved, theTCP connection

switches to the congestion avoidance mode and adjusts the load
similarly to Additive-Increase Multiplicative-Decrease (AIMD)
algorithm [4]. The choice ofAIMD is supposed to provide sta-
bility, i.e., convergence to fair efficient states.

Chiu and Jain provide a theoretical justification for favoring
AIMD: according to their analysis of linear adjustment algo-
rithms for a simple feedback model,AIMD yields the quickest
convergence to maxmin-fair states [4]. For simplicity, Chiu-
Jain model assumesuniform feedback– all users receive iden-
tical feedback. In reality however, the probability to receive a
congestion indication is higher for the user with a larger load.
Subsequent analytical studies ofTCP congestion control rep-
resent feedback more realistically and predict the transmission
rate for aTCP connection more accurately [2], [10], [12], [13].
Furthermore, experiments and more realistic models withpro-
portional negative feedbackagree that bandwidth allocation un-
derTCP does not converge to maxmin fairness [13], [16].

While reliance ofTCP on AIMD does not attain the original
goal of convergence to maxmin fairness, it is logical to reex-
amine the presumed superiority ofAIMD over alternative algo-
rithms. In fact, new algorithms have been proposed to improve
upon various features ofAIMD congestion control [3], [7], [8],
[9]. However, despite the recent advances inTCP feedback
modeling, it is still common to use Chiu-Jain model for compar-
ison of binary adjustment algorithms. This paper argues against
such practice. We provide evidence that due to the incorrect as-
sumption of uniform feedback, Chiu-Jain model is not suitable
for trustworthy conclusions about properties of an adjustment
algorithm. In particular, we show that albeit the scalableMIMD
(Multiplicative-Increase Multiplicative-Decrease) algorithm is
not stable under uniform feedback,MIMD does converge to fair
states under the more realistic assumption of proportional neg-
ative feedback. Our findings suggest that until algorithms are
analyzed with a realistic feedback model, optimal choice of a
binary adjustment algorithm will remain an open problem.

The rest of our paper is structured as follows. Section II dis-
cusses the issue of stability. Section III examines the speed of
convergence to fair states. Section IV studies the impact of dif-
ferentRTTs. Finally, Section V sums up our conclusions.
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Figure 1: Stability of LIMD in Chiu-Jain model where aI = 1, bI = 1.1, bD = 0.85, Xgoal = 30, n = 2, x1(0) = 10, and
x2(0) = 0.

II. STABILITY

In Chiu-Jain model, the network is a single bottleneck link
shared by cooperative users [4]. The model assumes that all
users have the sameRTT and adjust their loads simultaneously.
Consequently, the model employs a discrete timescale where
every instantt corresponds to the moment when each useri
adjusts its load toxi(t). The network provides the users with
a binary feedbacky(t) which indicates whether the total load
X(t − 1) after the previous adjustment exceeds an optimal
valueXgoal:

y(t) =
{

1 if X(t− 1) > Xgoal,
0 if X(t− 1) ≤ Xgoal

(1)

whereX(t) is the combined load of alln users at timet:

X(t) =
n

∑

i=1

xi(t). (2)

Note that the model assumesuniform feedback– all the users
receive the same feedbacky(t). The users have no access to
other external information includingn, Xgoal, or X(t− 1).

Chiu and Jain perform a static analysis for the following class
of linear adjustment algorithms:

∀i xi(t) =
{

aI + bIxi(t− 1) if y(t) = 0,
aD + bDxi(t− 1) if y(t) = 1 (3)

whereaI , bI , aD, andbD are real constants.
The criteria for choosing an appropriate algorithm include its

stability: from any initial state, loadxi(t) of each useri must
converge towards the efficient and fair amount ofXgoal/n. To
quantify fairness, Chiu and Jain use indexF (t) from [6]:

F (t) =
(X(t))2

n
n
∑

i=1
(xi(t))2

(4)

According to Chiu-Jain analysis, a linear algorithm for bi-
nary adjustments should belong to the followingLIMD (Linear-
Increase Multiplicative-Decrease) class in order to converge to
fair efficient states:

PROPOSITION 1. To make a linear adjustment algorithm
stable, its decrease policyshould be multiplicative, and its
increase policyshould have an additive component andmay
have a multiplicative component:

aI > 0, bI ≥ 1, aD = 0, 0 ≤ bD < 1. (5)

After convergence to efficiency, the total load underLIMD
oscillates within the following tight bounds:

bDXgoal < X(t) ≤ naI + bIXgoal. (6)

Proposition 1 has an intuitive explanation: multiplicative ad-
justments (both decreases and increases) do not affect the fair-
ness index while additive increases enhance it. Consequently,
LIMD algorithms monotonically raise the fairness index to its
optimal value of 1.

EXAMPLE 1. Figure 1 illustrates the behavior of theLIMD
algorithm withaI = 1, bI = 1.1, andbD = 0.85 in the net-
work that has the optimal load ofXgoal = 30 and serves two
users with the initial loads ofx1(0) = 10 and x2(0) = 0.
The state diagram in Figure 1a represents concurrent loads of
the users as points in a 2-dimensional space: the efficiency line
corresponds to the efficient states whereX(t) = Xgoal, and the
fairness line denotes the fair states wherex1(t) = x2(t). The
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LIMD algorithm converges to the intersection of these two lines,
i.e., to the fair efficient state characterized byx1(t) = x2(t) =
Xgoal/2. Figure 1b tracks the fairness index for the traversed
states.

In Chiu-Jain model, AIAD (Additive-Increase Additive-
Decrease) andMIMD (Multiplicative-Increase Multiplicative-
Decrease) algorithms do not converge to fair states. Their in-
stability however is due to the assumption of uniform feedback:
since such feedback does not contain information about fair-
ness, convergence to fair states requires different functions for
increase and decrease.

Under the more realistic assumption of proportional negative
feedback, a user with a larger load receives congestion indica-
tions more frequently. Thus, proportional negative feedback re-
flects fairness and thereby facilitates convergence to fair states.
In comparison to uniform feedback, proportional negative feed-
back yields a wider class of stable adjustment algorithms. For
example, Venkitaraman et al argue thatAIAD converges to fair
states under proportional negative feedback [15]. Below, we
show thatMIMD has the same property.

Consider a synchronousMIMD-controlled network with pro-
portional negative feedback. Letri and rj be the number of
congestion indications received respectively by usersi and j
during interval[0, t]. At time t, loads of the users become:

xi(t) = bri
Dbt−ri

I xi(0) and xj(t) = brj
D bt−rj

I xj(0). (7)

If xi(t) > xj(t) during interval[0, t], then due to propor-
tional negative feedback we haveri > rj and:

xi(t)
xj(t)

= { (7) }
bri
Dbt−ri

I xi(0)

brj
D bt−rj

I xj(0)
=

(bD

bI

)ri−rj

· xi(0)
xj(0)

< { 0 < bD < 1, bI > 1, andri > rj }
xi(0)
xj(0)

.

Therefore, theMIMD-controlled network converges toward the
fair states wherexi(t) = xj(t).

Stability of MIMD under proportional negative feedback
makes this algorithm a viable alternative toAIMD becauseAIMD
and other algorithms with additive components are not scalable.
As (6) shows for Chiu-Jain model, oscillations of the total load
after convergence underAIMD grow linearly in size as the num-
ber of users increases. Morris confirms experimentally that the
average loss rate grows linearly with the number of competing
TCP connections and thereby worsensTCP performance [11].
On the other hand,MIMD congestion control is scalable since
the size of the total load oscillations after convergence under
MIMD does not depend on the number of users. Consequently,
it is possible to design such anMIMD-controlled network with
ECN-style packet marking [14] that traffic in steady loaded
states always oscillates within the buffer of a bottleneck link
and keeps the link fully utilized without losing packets.

III. SPEED OFCONVERGENCE TOFAIR STATES

Chiu and Jain show thatsmoothness(measured as the size of
oscillations in the total load) andresponsiveness(measured as
time of convergence to efficient states) conflict: any attempt to
changeaI , bI , or bD to improve smoothness worsens respon-
siveness, and vice versa. Conceding this trade-off between re-
sponsiveness and smoothness, [4] examines thespeed of con-
vergence to fair states. After proving that a single increase un-
der LIMD boosts the fairness index the most whenbI = 1, [4]
concludes with:

PROPOSITION 2. To provide the quickest convergence to
fair states, anLIMD algorithm should have an additive increase
policy and a multiplicative decrease policy:

aI > 0, bI = 1, 0 ≤ bD < 1. (8)

As the following example shows, Proposition 2 is not com-
pletely correct. After a sequence of adjustments,LIMD with
bI > 1 can raise the fairness index higher thanAIMD.

EXAMPLE 2. Let the network haveXgoal = 10 and two
users with the initial loads ofx1(0) = 7 andx2(0) = 0. Con-
sider AIMD with aI = 1.1, bD = 0.5 and LIMD with aI = 1,
bI = 1.02, bD = 0.5. According to (6), these algorithms have
the same smoothness. Due to the largeraI/bI ratio, AIMD
raises the fairness index higher thanLIMD after the first ad-
justment (as Chiu and Jain prove). However as Figure 2 shows,
LIMD raises the fairness index higher thanAIMD after the se-
quence of six adjustments.

WhenLIMD improves the fairness index quicker, either the
gained advantage is not significant orAIMD reaches the same
level of fairness after a small number of additional adjustments.
Thus, despite the occasionally suboptimal speed,AIMD does
yield the quickest, or at least compatible, overall convergence
to fair states in Chiu-Jain model.
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Figure 2: Speed of convergence to fair states underLIMD
with aI = 1, bI = 1.02, bD = 0.5 and under AIMD with aI =
1.1, bD = 0.5 in Chiu-Jain model wheren = 2, Xgoal = 10,
x1(0) = 7, and x2(0) = 0.

As Section II shows, the unrealistic assumption of uniform
feedback affects conclusions about stability. Let us now exam-
ine whether Chiu-Jain model yields reliable conclusions about
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the speed of convergence to fair states. Consider twoTCP con-
nections that haveRTT of 100 ms, use 500 B packets and share
a 100 Mb/s bottleneck link. Let the second connection start
when the first one utilizes the entire bottleneck. Then, the new
connection surpasses its slow-start phase and switches immedi-
ately to the congestion avoidance mode. Chiu-Jain model rep-
resents this scenario as anAIMD-controlled network with two
users,aI = 1, bD = 0.5, Xgoal = 2500, x1(0) = Xgoal, and
x2(0) = 0. In this model, the second user reaches its fair share
of Xgoal/2 only after 27546 adjustments which translates into
45 minutes of real time.

However according to experiments withTCP in the same set-
tings, the newTCP connection receives congestion indications
less frequently and reaches its fair bandwidth share substan-
tially quicker than predicted by Chiu-Jain model with its uni-
form feedback. Thus, proportionality of negative feedback ac-
celerates the convergence to fair states more significantly than
the choice ofAIMD over otherLIMD algorithms.

IV. D IFFERENTROUND-TRIP TIMES

Since bandwidth allocation underTCP depends on round-
trip times [13], [16], it is interesting to examine a version of
Chiu-Jain model where users can have differentRTTs. Our
asynchronous extension adds two parametersdi andfi to Chiu-
Jain model:di represents delay from useri to the bottleneck
link while fi denotes delay from the bottleneck link to the user.
Thus,RTT for useri equalsdi + fi.

Taking the feedback delays into account, the asynchronous
model redefines the total load on the network at timet as:

X(t) =
n

∑

i=1

xi(t− di) (9)

wherexi(t− di) refers to the load of useri at timet− di.
Similarly to the original model, the total load alone deter-

mines feedback at timet:

y(t) =
{

1 if X(t) > Xgoal,
0 if X(t) ≤ Xgoal.

(10)

Let us now examine the network behavior when each user em-
ploysAIMD to adjust its load once per itsRTT:

∀i xi(t) =
{

aI + xi(t− di − fi) if y(t− fi) = 0,
bDxi(t− di − fi) if y(t− fi) = 1. (11)

EXAMPLE 3. Consider anAIMD-controlled network with
two users,aI = 1, bD = 0.9, Xgoal = 100, and differentRTTs.
The first user hasRTT of 8 (formed byd1 = 4 andf1 = 4). RTT
for the second user is four times shorter and equals 2 (con-
sisting ofd2 = 1 and f2 = 1). Figure 3 presents the network
behavior for two sets of initial conditions.

When the users have the initial loads ofx1(0) = 0 and
x2(0) = 0, the network converges from this fair inefficient state
to steady states where the second user imposes a larger load
than the first user. If the network starts at the unfair efficient
state with the initial loads ofx1(0) = 100 andx2(0) = 0, the
relationship is reverse: after convergence to steady states, the
second user settles at a smaller load than the first user.
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Figure 3: AIMD behavior in the asynchronous version of
Chiu-Jain model whereaI = 1, bD = 0.9, n = 2, Xgoal =
100, d1 = 4, f1 = 4, d2 = 1, andf2 = 1.

In addition to the lack of convergence to maxmin fairness,
the above example illustrates the following two properties of
AIMD in this asynchronous model:

1) AIMD is sensitive to initial conditions and has multiple
attractors.

2) After convergence underAIMD to steady states, users
with longerRTTs can maintainlarger loads.
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These properties contradict both Chiu-Jain model and more
realistic models with proportional negative feedback. To un-
derstand the reason for the contradictions, let us return to Ex-
ample 3 and compare frequencies of negative feedback for dif-
ferent users after the users converge to steady states. In the
scenario when the first user (i.e., the user with the longerRTT)
receives a smaller steady load, 24% of feedback to this user is
negative whereas only 13% of feedback to the second user indi-
cates congestion. However, when the first user acquires a larger
steady load, the frequencies of negative feedback are reverse,
13% and 22% for the first and second users respectively.

In contrast, users in Chiu-Jain model always receive negative
feedback with the same frequency. In models with proportional
negative feedback, users with larger load always receive con-
gestion indications more frequently. In both cases,AIMD has a
single attractor.

The above discussion not only shows that the asynchronous
version of Chiu-Jain model is unrealistic but also pinpoints the
source of the flaws – incorrect frequencies of negative feed-
back to different users. Thus, this section reinforces our posi-
tion that a realistic model for negative feedback is essential for
trustworthy conclusions about properties of binary adjustment
algorithms.

V. CONCLUSION

In this paper, we revisited the issue of choosing a binary ad-
justment algorithm for congestion control. Chiu and Jain pio-
neered analysis of this problem and offered a justification for fa-
voringAIMD: among stable linear algorithms,AIMD ensures the
quickest convergence to maxmin-fair states. Chiu-Jain model
however made a simplifying assumption of uniform feedback
for all users. In reality, the user with a larger load has a higher
probability to receive a congestion indication. Subsequent anal-
yses ofTCP congestion control represented feedback more re-
alistically and predicted the transmission rate for aTCP con-
nection more accurately. Furthermore, the advanced theory and
experiments agreed that reliance onAIMD does not enableTCP
to converge to maxmin fairness.

Despite the recent progress inTCP feedback modeling, it is
still common to use Chiu-Jain model for comparison of binary
adjustment algorithms. This paper argued against such practice.
We provided evidence that due to the incorrect assumption of
uniform feedback, Chiu-Jain model is not suitable for trustwor-
thy conclusions about properties of an adjustment algorithm.

First, we showed that althoughMIMD is not stable in Chiu-
Jain model,MIMD does converge to fair states under the more
realistic assumption of proportional negative feedback. This
finding is significant because in contrast toAIMD, MIMD con-
gestion control is scalable: the size of the total load oscillations
underMIMD in steady states does not depend on the number
of users. Second, we observed that proportionality of nega-
tive feedback accelerated convergence to fairness underLIMD
more significantly than the choice ofAIMD over otherLIMD
algorithms. Third, after showing thatAIMD has multiple un-
fair attractors in an asynchronous version of Chiu-Jain model,
we pinpointed the incorrect frequencies of negative feedback in
this asynchronous model as the source of the contradiction with
stability of AIMD.

The aggregate of the above arguments leads us to the con-
clusion that until algorithms are analyzed with a more realistic
feedback model, optimal choice of a binary adjustment algo-
rithm will remain an open problem.

REFERENCES

[1] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, April 1999.

[2] E. Altman, K. Avrachenkov, and C. Barakat. A Stochas-
tic Model of TCP/IP with Stationary Random Loss. In
Proceedings ACM SIGCOMM 2000, August 2000.

[3] D. Bansal and H. Balakrishnan. Binomial Congestion
Control Algorithms. InProceedings IEEE INFOCOM
2001, April 2001.

[4] D. Chiu and R. Jain. Analysis of the Increase and De-
crease Algorithms for Congestion Avoidance in Computer
Networks. Journal of Computer Networks and ISDN,
17(1):1–14, June 1989.

[5] V. Jacobson. Congestion Avoidance and Control. InPro-
ceedings ACM SIGCOMM’88, August 1988.

[6] R. Jain, D. Chiu, and W. Hawe. A Quantitative Measure
of Fairness and Discrimination for Resource Allocation
in Shared Computer Systems. Technical Report TR-301,
DEC, September 1984.

[7] S. Jin, L. Guo, I. Matta, and A. Bestavros. TCP-friendly
SIMD Congestion Control and Its Convergence Behavior.
In Proceedings IEEE ICNP 2001, November 2001.

[8] A. Lahanas and V. Tsaoussidis. Additive Increase Mul-
tiplicative Decrease - Fast Convergence (AIMD-FC). In
Proceedings IEEE Networks 2002, August 2002.

[9] D. Loguinov and H. Radha. Increase-Decrease Conges-
tion Control for Real-time Streaming: Scalability. InPro-
ceedings IEEE INFOCOM 2002, June 2002.

[10] J. Mahdavi and S. Floyd. TCP-Friendly Unicast Rate-
Based Flow Control. End2end-interest mailing list, Jan-
uary 1997.

[11] R. Morris. Scalable TCP Congestion Control. InProceed-
ings IEEE INFOCOM 2000, March 2000.

[12] A. Mukherjee and J. Strikwerda. Analysis of Dynamic
Congestion Control Protocols - A Fokker-Planck Approx-
imation. InProceedings ACM SIGCOMM’91, September
1991.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical Val-
idation. InProceedings ACM SIGCOMM’98, September
1998.

[14] K.K. Ramakrishnan and S. Floyd. A Proposal to Add Ex-
plicit Congestion Notification (ECN) to IP. RFC 2481,
January 1999.

[15] N. Venkitaraman, T. Kim, K. Lee, S. Lu, and V. Bhargha-
van. Design and Evaluation of a Suite of Congestion Con-
trol Algorithms for the Future Internet. InProceedings
ACM SIGMETRICS’99, May 1999.

[16] M. Vojnovic, J. Y. Le Boudec, and C. Boutremans.
Global Fairness of Additive-Increase and Multiplicative-
Decrease with Heterogeneous Round-Trip Times. InPro-
ceedings IEEE INFOCOM 2000, March 2000.


