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Abstract—File transfer, web download, and many other ap-
plications are primarily interested in minimal delay achievable
for their messages. In this paper, we investigate allocating the
bottleneck link capacity to transmit messages efficiently but
fairly. While SRPT (Shortest Remaining Processing Time) is
an optimally efficient algorithm that minimizes average delay of
messages, large messages might starve under SRPT in heavy load
conditions. PS (Processor Sharing) and ViFi (Virtual Finish Time
First) are fair but yield higher average delays than under SRPT.
We explore the class of fair algorithms further and prove that
no online algorithm in this class is optimally efficient. Then, we
derive a fair algorithm SFS (Shortest Fair Sojourn) and report
extensive experimental evidence that SFS is consistently more
efficient than PS and even ViFi during either temporal overload
or steady-state operation, with largest benefits achieved when
average load is around the bottleneck link capacity. Furthermore,
average delay under the fair SFS remains close to the minimum
attained under the unfair SRPT.

I. INTRODUCTION

Distributed applications communicate by sending messages
over networks which might use multiple packets to deliver one
message. For example, thousands or even millions of packets
might carry a long message of web download or file transfer.
While such applications are primarily interested in minimal
delays for their messages, the network ability to minimize
the delays is constrained chiefly by the path capacity from
the source to the destination. Specifically, the capacity of a
bottleneck link on the path is the main factor determining
minimal achievable delays. This paper investigates fair but
efficient algorithms for allocating the bottleneck link capacity
to minimize message delays.

Shortest Remaining Processing Time (SRPT) schedules
messages preemptively in the order of their remaining trans-
mission delays and is optimally efficient [1]. However, the
minimal average delay comes at the expense of potential
unfairness: in some settings with heavy load, SRPT starves
large messages by delaying them without bound [2].

Processor Sharing (PS) is an alternative classic algorithm
that instantaneously allocates equal shares of the bottleneck
capacity to all pending messages [3]. Consequently, expected
delay of a message under PS is proportional to the message
size. Also, since PS does not rely on knowledge of message
sizes, PS lends itself nicely to implementation in layered
network designs. Due to the above reasons, PS has become
a traditional ideal in network capacity allocation. Although

packet-switching networks do not support instantaneous shar-
ing of a link, a lot of research has been conducted on packet
transmission algorithms that approximate the PS ideal. Packet-
grained approximations of PS include Weighted Fair Queuing
(WFQ) [4], Deficit Round Robin (DRR) [5], and other al-
gorithms for fair queuing at routers as well as fair end-to-
end congestion control schemes exemplified by Transmission
Control Protocol (TCP) [6].

While SRPT is unfair, PS achieves fairness by sacrificing
efficiency: average delay of messages under PS is significantly
higher. Recent studies reveal remarkable existence of algo-
rithms that have it both ways and combine fairness with SRPT-
like efficiency. Virtual Finish Time First (ViFi) is a specific
efficient representative of the fair algorithmic class where no
message is delayed longer than under PS [7]. ViFi schedules
messages preemptively in the order of their finish times under
PS and is independently proposed as Fair Sojourn Protocol
(FSP) in the context of web servers [8]. Significant reductions
in average delay under ViFi versus PS are substantiated both
experimentally and analytically [7]–[9].

This paper sheds more light on the class of fair algorithms
for network capacity allocation. First, we show that the fair
class does not contain an optimally efficient online algorithm.
Then, we develop Shortest Fair Sojourn (SFS), a fair algorithm
with even lower average delay than under ViFi in most set-
tings. Our extensive simulations over a wide range of network
load illustrate efficiency and fairness properties of SFS, ViFi,
PS, and SRPT. In particular, we demonstrate that average delay
under SFS versus ViFi is consistently lower over the whole
range of the experiments.

The rest of the paper is structured as follows. Section II
clarifies our model, metrics, and terminology. Section III rules
out existence of an optimally efficient algorithm in the fair
class. This section also presents SFS and proves its fairness.
Section IV reports the experimental comparison of SFS, ViFi,
PS, and SRPT. Finally, Section V sums up our findings and
discusses future work.

II. MODEL, TERMINOLOGY, AND METRICS

We define a message as an atomic data unit meaningful for
an application. Messages arrive for network transfer in their
entirety. Delay of a message is time passed from the message
arrival until the whole message reaches its destination. Related
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studies refer to delay under other names such as transfer
time, response time, flow time, or sojourn time. Transmission
delay of a message represents its communication needs and
equals S

C , where S is the message size, and C is the capacity
of the network bottleneck link shared with all the other
messages. Transmission delay is also known as processing
time, e.g., as reflected in the name of SRPT. We assume that
the communications utilize the entire bottleneck link capacity
and experience negligible propagation, node processing, and
error recovery delays. Then, besides transmission delay, the
only other component of message delay is due to waiting for
the bottleneck link to become available.

Arrival times and transmission delays of messages char-
acterize network load. Network service is represented by an
algorithm that allocates the bottleneck link capacity to pending
messages. In particular, we are interested in online algorithms
that have no access to information about future messages.
Capacity allocation enjoys ideal flexibility that allows both
instantaneous link sharing and instantaneous transmission pre-
emption.

Since PS has become synonymous with fairness in network
resource allocation, we rely on delays of individual messages
under PS as a basis for defining the fair algorithmic class:

Definition 1: Starvation is a scenario where a message fin-
ishes later than under PS. An algorithm for capacity allocation
is fair if and only if no starvation occurs under the algorithm
for any network load.

To quantify fairness of an algorithm to a particular message,
we introduce a metric of starvation stretch:

Definition 2: Starvation stretch sX(m) of message m under
algorithm X is the ratio of message delay dX(m) under
algorithm X to message delay dPS(m) under PS:

sX(m) =
dX(m)
dPS(m)

. (1)

Note that algorithm X is deemed unfair if there exists
network load where sX(m) > 1 for at least one message m.

Also note an implicit assumption that network capacity is
allocated among messages. We strongly believe that fairness
of capacity allocation should be defined with respect to real-
world entities, rather than messages or packet flows as in
traditional networking. However, since the important “among
what” aspect is orthogonal to our main contributions and
requires a separate thorough treatment, we do not explore it
further in this paper.

To quantify efficiency of network capacity allocation under
algorithm X , we measure average delay DX for all n messages
in imposed network load:

DX =

n∑
m=1

dX(m)

n
. (2)

Because SRPT is an optimally efficient algorithm if fairness
concerns are put aside, we use average delay under SRPT as
a baseline for assessing efficiency of fair algorithms:

Definition 3: Average letup LX under algorithm X is the
ratio of average delay DX under algorithm X to average delay
DSRPT under SRPT:

LX =
DX

DSRPT

. (3)

Although a fair algorithm is not always able to match the
ideal efficiency of the unfair SRPT, consistent closeness of
average letup LX to 1 is an indicator that fair algorithm X is
highly efficient.

III. IMPROVING ON VIFI

While the fair ViFi provides significantly lower average
delay than the fair PS [7], one might wonder whether ViFi or
any other online algorithm in the fair class minimizes average
delay. A simple counterexample proves the inverse theorem:

Theorem 1 (No Optimal Online Algorithm): No online al-
gorithm minimizes average delay without starvation.

Proof: First, let us consider the 12-message network load
described in Figure 1. Since SRPT causes no starvation for
this load, it is optimal to transmit the messages in an SRPT
order: any permutation of 1 through 9 followed by 11, 10,
and 12. Figure 2a depicts an optimal schedule with average
delay 618

12 . Note that average delay under ViFi, or any other
algorithm that transmits message 10 before messages 11 and
12, is higher and equals 622

12 .
Now, let us suppose that message 13 with transmission

delay 4 arrives at time 105. By time 105 in the above optimal
schedule, messages 1 through 9 and 11 have finished, and
message 10 is being transmitted since time 100. Suspending
message 10 to transfer message 13 would lead to starvation
because the resumed message 10 would complete at time 118
whereas Figure 2b shows that message 10 finishes under PS
at time 117. Hence, message 10 has to finish before messages
13 and 12 are transmitted. The resulting schedule provides
average delay 635

13 . However, smaller average delay 634
13 would

be achieved if all 13 messages were instead transmitted in a
ViFi order: any permutation of 1 through 9 followed by 10, 11
(suspended at time 105 to transfer message 13), 13, 11 (rest of
it), and 12. Figure 2c depicts such an optimal ViFi schedule.

Therefore, since optimality of transmitting message 11
(rather than message 10) at time 90 depends on whether
message 13 arrives at time 105, there is no optimal online
algorithm that minimizes average delay without starvation.

Although Theorem 1 precludes existence of a fair online
algorithm that minimizes average delay, some algorithms
might outperform ViFi with respect to average delay in most

Message Arrival time Transmission delay

1 through 9 0 10 each

10 0 14

11 90 10

12 90 20

Fig. 1. Network load in the proof of Theorem 1.
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Fig. 3. Fairness of ViFi and SFS versus unfairness of SRPT for uniformly distributed message sizes at 95% load: (a) starvation stretch for every seventh
message in a single experiment; (b) average of starvation stretches over 1,000 experiments: the rich get richer under ViFi or SFS, and so do the poor; SFS
helps the middle class more; (c) cumulative distribution of individual starvation stretches from 100 experiments.

The code and running instructions for all the reported
simulations are available at our web site [11].

B. Fairness: lower delays for all

Figure 3a plots the starvation stretch for every seventh of
all 3,000 (ordered by size) messages in a single experiment at
95% load. Under either of SRPT, ViFi or SFS, a small fraction
of messages across the whole spectrum of message sizes has
starvation stretch 1. These messages finish at exactly the same
times as under PS because they conclude a traffic burst by
emptying the queue upon their completion (under both PS and
SRPT, ViFi or SFS). Small and even midsize messages benefit
significantly from SRPT, which delivers them up to 50 times
faster than under PS. However, some large messages starve
under SRPT. For example, delay for the least lucky message
under the unfair SRPT is about 50 times larger than under PS.

For the fair ViFi, Figure 3a shows that 800 smallest mes-
sages enjoy similarly low starvation stretches as under SRPT.
To explain the similarity, we observe that a small message
is likely to possess both the shortest remaining transmission
delay and earliest PS finish time among pending messages. For
larger messages, the ViFi profile becomes different. Starvation
stretches of midsize messages rise significantly closer to 1 than
under SRPT. On the other hand, the increase enables ViFi to
complete all large messages by their PS finish times.

SFS also schedules small messages similarly to ViFi: re-
spective points in Figure 3a often coincide. The reason for the
similarity is the same as for SRPT versus ViFi. Again, SFS and
ViFi differ in their treatment of midsize and large message. A
dense cluster of points around starvation stretch 1 for large

messages under SFS indicates that SFS reduces delays for
midsize messages by postponing large messages almost as
long as possible without causing starvation. In addition to
the across-the-spectrum line at starvation stretch 1, Figure 3a
also reveals sparser but still discernible rows of points with
starvation stretches 1

2 , 1
3 , and 1

4 . The rows correspond to
messages that arrive and finish while 1, 2, or 3 other messages
remain pending (under both PS and SRPT, ViFi or SFS).

To expose the discussed trends more clearly, we repeat the
experiment 1,000 times and average the 1,000 obtained sets of
starvation stretches sorted in the increasing order of message
sizes. Figure 3b shows that SRPT substantially decreases
delays of small and midsize messages but the largest messages
typically starve. Under ViFi, not only small messages (the rich)
benefit from abandoning PS but also the largest messages (the
poor) have average starvation stretch about 0.7. Hence, ViFi
improves upon PS across the board by reducing delays for
all classes of messages: rich, middle, and poor! Figure 3b
also illustrates strategic differences between SFS and ViFi.
By keeping starvation stretches of large messages closer to 1,
SFS helps the middle class of midsize messages to enjoy
significantly lower delays than under ViFi.

The average starvation stretches reported in Figure 3b
blur fates of individual messages. Hence, Figure 3c plots
cumulative distributions of all 300,000 individual starvation
stretches in 100 instances of our experiment. Comparison of
ViFi with SRPT shows that while starvation stretches up to
the 85-th percentile are higher under the fair ViFi, the top 5%
of starvation stretches under the unfair SRPT exceed 1, i.e.,
belong to starved messages. Comparison of SFS with ViFi
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Fig. 4. Efficiency of SRPT, PS, ViFi, and SFS with uniformly distributed message sizes.

reveals a main divide around 73%. Up to the 73-rd percentile,
starvation stretches are lower under SFS. Under either SFS
or ViFi, the top 5% of starvation stretches equal 1. Between
the 73-rd and 95-th percentiles, ViFi yields smaller starvation
stretches. Similarly to Figure 3a, lines in Figure 3c contain
horizontal segments at starvation stretches 1, 1

2 , 1
3 , 1

4 , and 1
5 .

These flat segments reflect messages that arrive and finish
(under both PS and SRPT, ViFi or SFS) while 0, 1, 2, 3,
or 4 other messages remain pending.

C. Efficiency: decrease of average delay

To evaluate efficiency of the algorithms, we conduct our ex-
periment for various values of load l. We repeat the experiment
1,000 times for each examined load l ≤ 120%, i.e., including
all examined instances of underload, but generally less for
overloads of l > 120%. Figure 4a illustrates an intuitive
expectation that average delays under SRPT, PS, ViFi, and SFS
grow as load increases. After load hits and surpasses 100%, the
delays remain finite and even decelerate their growth because
the number of messages in every experiment is finite. For
the extreme of “infinite” load when all 3,000 messages arrive
simultaneously, the average delays are analytically expressed
by Gorinsky and Rao [7]. In particular, PS yields the follow-
ing average delay in a single experiment with simultaneous
message arrivals:

D
∞
PS =

n∑
k=1

(2(n− k) + 1)mk

nC
(5)

where mk is the size of the k-th smallest message, n = 3,000
is the number of messages, and C = 10 Tbps is the link
capacity. When the messages arrive simultaneously, SRPT,

SFS, and ViFi produce an identical transmission schedule for
the experiment and achieve the same average delay [7]:

D
∞
SRPT = D

∞
SFS = D

∞
ViFi =

n∑
k=1

(n− k + 1)mk

nC
. (6)

For the considered uniform distribution of message sizes,
we derive the expected average delay under PS as:

D
∞
PS =

(4n + 1)mmin + (2n− 1)mmax

6C
≈ 88,118 seconds

where mmin = 100 GB and mmax = 100 TB are respectively
minimum and maximum message sizes in the distribution. The
expected average delay under SRPT, SFS, and ViFi becomes:

D
∞
SRPT = D

∞
SFS = D

∞
ViFi =

(n + 1)(2mmin + mmax)
6C

≈ 44,081 sec.

Figure 4a confirms that experimental average delays converge
asymptotically to the above analytical predictions.

Figure 4b plots average letups under PS, ViFi, and SFS. All
three letups peak around l = 100%. At this load where the
arrival rate matches the link capacity, PS, ViFi, and SFS have
respectively 2.8 times, 22%, and 9% larger average delays
than under SRPT. Asymptotically, the average letup under PS
converges to:

L
∞
PS =

(4n + 1)mmin + (2n− 1)mmax

(n + 1)(2mmin + mmax)
≈ 2

while SFS and ViFi converge to the optimal efficiency:

L
∞
SFS = L

∞
ViFi = 1.

In general, SFS provides SRPT-like efficiency with consis-
tently lower average delays than even under ViFi.
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Fig. 5. Efficiency of SRPT, PS, ViFi, and SFS with Pareto-sized messages.

While our results for l > 100% offer interesting insights into
behavior of the algorithms in long-term overload conditions,
Figure 4c focuses on underload scenarios l < 100% which
are the most relevant for steady-state operation. Again, SFS
consistently outperforms ViFi. For example, when load equals
80%, average delays under PS, ViFi, and SFS are respectively
2 times, 7%, and only 3% worse then the minimum attained
under the unfair SRPT.

Finally, we explore efficiency of PS, ViFi, and SFS for the
Pareto distribution of message sizes. As Figure 5 illustrates,
Pareto-sized messages reap even greater benefits from aban-
doning PS in favor of the efficient representatives of the fair
class. Average delays under PS, ViFi, and SFS peak around
7.3 times, 25%, and 11% above the minimum provided by
the unfair SRPT. Once again, SFS consistently supports the
highest efficiency among the examined fair algorithms.

V. CONCLUSION

In this paper, we studied a class of fair algorithms for
bottleneck link capacity allocation where no message finishes
later than under PS. In addition to PS, the fair class includes
ViFi and newly proposed SFS (Shortest Fair Sojourn). While
we proved that no online algorithm in the fair class mini-
mizes average delay of messages, our extensive experiments
demonstrated that SFS consistently outperforms PS and even
ViFi during either temporal overload or steady-state operation,
with largest efficiency benefits achieved when average load
is around the bottleneck link capacity. Furthermore, average
delay under the fair SFS remains close to the minimum
attained under the unfair SRPT. Our simulations revealed that
SFS and ViFi gain their significant efficiency improvements
over PS across the whole spectrum of message sizes, including
large messages but primarily due to dramatic delay reductions
for small messages. To outperform ViFi, SFS decreases delays
for midsize messages by postponing large messages almost as
long as possible without causing starvation.

Whereas link scheduling can affect location of bottlenecks
in an arbitrary network topology, our focus on one link was
clearly an excessive simplification. We intend to tackle the
harder general problem in a future study. Extensions of the pre-
sented work will also address application diversity. First, our

analysis ignored propagation, node processing, error recovery
and other delays dominated by bottleneck transmission delays
for long messages. For shorter messages, the extra delays
contribute more to overall delay and thereby reduce the relative
gains from the efficient utilization of the bottleneck link. To
handle a more complex model, we will learn from prior re-
search on message-grained transmission over packet-switching
networks [12]. Second, some applications are interested in
other network performance metrics than minimal delay achiev-
able under current load. For instance, a streaming application
might treat each frame of video as a separate message and
prefer a delivery service with guaranteed maximum delay
between any two subsequent frames. We are designing an
integrated allocation framework where one service minimizes
message delays, and the other enables applications to reserve
and use end-to-end resources as per needed performance.
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