
Robust Distributed Monitoring of Traffic Flows
Vitalii Demianiuk, Sergey Gorinsky, Member, IEEE/ACM, Sergey Nikolenko, and Kirill Kogan

Abstract—Unrelenting traffic growth, device heterogeneity, and
load unevenness create scalability challenges for traffic monitor-
ing. In this paper, we propose Robust Distributed Computation
(RoDiC), a new approach that addresses these challenges by
shifting a portion of the monitoring-task execution from an
overloaded network element to another element that has spare
resources. Moving the entire execution of the task away from
the overloaded element might be infeasible because execution
on multiple elements is inherent in the task or requires at
least partial participation by the designated overloaded element.
Furthermore, distributed execution of a stateful task has to be
resilient to network noise in the form of packet reordering and
loss. The RoDiC approach relies on two main principles of packet
grouping and state overlap to support exact robust distributed
monitoring of traffic flows under network noise. RoDiC uses
an open-loop paradigm that does not add any control packets,
communicates flow state in-band by appending few control bits
to packets of monitored flows, and keeps measurement latency
low. We apply RoDiC to the problem of flow-size computation
and discuss how to instantiate our general technique for real-
time packet-loss telemetry. The paper develops robust algorithms,
proves their correctness and performance properties, and reports
an evaluation driven by realistic traffic traces. The RoDiC
algorithms successfully distribute the monitoring-task load while
keeping the memory and computation overhead low.

Index Terms—Traffic monitoring, distributed algorithm, state-
ful task, network noise, robust design, flow-size computation,
real-time telemetry.

I. INTRODUCTION

Network traffic monitoring underpins efficient, reliable, and
secure operation of any network. Knowledge of traffic proper-
ties helps the network operator in planning capacity, providing
quality of service, mitigating attacks, etc. Monitoring tasks
include measurement of flow sizes [2]–[10] and real-time
telemetry of network performance, e.g., loss experienced by
flows between ingress and egress elements [11]–[14]. While
such telemetry intrinsically requires distributed execution of
the monitoring task in both ingress and egress elements of each
flow, other tasks can be accomplished in a single element.

The work of Vitalii Demianiuk and Kirill Kogan was supported in part by
the Israeli Innovation Authority under the Knowledge Transfer Commercial-
ization Program (MAGNETON) file no. 71249, in part by the Ariel Cyber
Innovation Center in cooperation with the Israel National Cyber Directorate
in the Prime Minister’s Office. The research by Sergey Gorinsky and Kirill
Kogan was supported in part by the Regional Government of Madrid with
grant P2018/TCS-4499, EdgeData-CM. The work of Sergey Nikolenko, in
particular on theorems 1, 4, and 6 and section VI, was supported by the
Russian Science Foundation grant no. 17-11-01276. A preliminary version of
this article appeared in the proceedings of ICNP 2019 [1].

Vitalii Demianiuk is with Ariel University, 40700 Ariel, Israel (email:
chavit92@gmail.com). Sergey Gorinsky is with IMDEA Networks Insti-
tute, 28918 Leganés, Spain (e-mail: sergey.gorinsky@imdea.org). Sergey
Nikolenko is with the Steklov Institute of Mathematics, 191023 St. Petersburg,
Russia, and National Research University Higher School of Economics,
194100 St. Petersburg, Russia (email: sergey@logic.pdmi.ras.ru). Kirill Kogan
is with Ariel University, 40700 Ariel, Israel (e-mail: kirill.kogan@gmail.com).

switch D

task T

switch S insufficient resources

(a) At designated switch S that has insufficient resources.

switch D
task T

switch S insufficient resources

network noise

(b) Relocation of the task to switch D and network noise.

switch D
task T

task T
switch S insufficient resources

state overlap

network noise

(c) Robust distributed execution by RoDiC at both S and D.

Fig. 1: Execution of a stateful monitoring task.

Challenges of scalable traffic monitoring include unrelenting
traffic growth, device heterogeneity, and load unevenness.
First, while traffic keeps growing in both volume and number
of flows, the processing and memory needed for traffic mon-
itoring in network elements grow as well. Second, networks
comprise elements of increasing heterogeneity ranging from
basic IoT (Internet of Things) access devices with greatly
limited capabilities to high-end core routers that forward
millions of concurrent flows. Third, the monitoring load on
different network elements is uneven, and one element might
get overloaded even when other elements have spare resources.

Even a relatively simple task, such as computing the sizes
of all flows at a network element, puts the scarce data-
plane resources under a strain when the number of flows
becomes large. Figure 1a depicts an example where task T
overwhelms the resources available at switch S. A prominent
body of related work explores approximate solutions that give
up accuracy of flow-size computation to reduce memory re-
quired in a single element. Such approximate solutions include
estimators [2]–[5] and sketches: CM [6], CU [7], Pyramid
Sketch [8], UnivMon [9], and Elastic Sketch [10]. A trace-
driven evaluation of CEDAR [5], SAC [4], and DISCO [3]
shows their average relative errors in excess of 12% for 8-bit
per-flow estimators [5]. The average relative error of Elastic
Sketch, one of the most advanced current proposals, can be
equal to 4 even when using 0.2 MB to represent 110K flows,
i.e., around 15 bits per flow, as figure 9a shows in [10]. Such
accuracy might be insufficiently low.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

An alternative technique for addressing the scalability chal-
lenge in a single network element is to monitor traffic flows by
utilizing resources in multiple network elements as a shared
pool. If a monitoring task overloads an element, then the task
execution can be shifted from the overloaded element along
the flow path to another element that has ample resources.
Illustrating this approach for the above example, figure 1b
shifts task T to switch D. The task relocation empowers
the network to effectively leverage its global processing and
memory resources and cope with local monitoring overloads.

Moving the entire execution of a monitoring task from
a designated overloaded element to another element on the
flow path can endanger the result accuracy due to network
noise in the form of packet reordering and loss. As depicted
in figure 1b, network noise might prevent switch D from
executing task T as accurately as at switch S because the
network might lose or reorder packets while delivering them
from S to D. Such imprecision can arise regardless of whether
the two network elements communicate over an unreliable or
reliable transport protocol. Hence, the task execution should
involve the originally designated element to at least some
extent and be made resilient to network noise.

Our contributions. This paper proposes Robust Distributed
Computation (RoDiC)1, a general technique that executes a
monitoring task in multiple network elements correctly despite
network noise on the paths between the elements. For stateful
tasks, the proposed technique not only maintains state in
different elements but also resiliently communicates some state
between these elements. RoDiC supports open-loop monitor-
ing of flow metrics without introducing any control packets.
Data packets of each monitored flow piggyback few (e.g.,
three) control bits to communicate flow state. This feature
makes RoDiC applicable to unidirectional communications.
In comparison to distribution of static policies [15]–[17], the
proposed method incorporates additional mechanisms required
to provide robustness. Instead of sacrificing accuracy as in
scalable approximate solutions, the RoDiC technique enables
scalable exact reconstruction of flow metrics.

While RoDiC is a general method that can be instantiated
differently for different metrics, its two main design principles
are as follows:

1) Packet grouping: RoDiC partitions each flow into groups
of consecutive packets and distributes state so that a sub-
sequent network element deals with the metric monitoring
at the coarser granularity of packet groups.

2) State overlap: RoDiC maintains distributed state across
multiple network elements in overlapping chunks. Sync
bits in data packets communicate the chunk overlap to
keep the distributed state consistent despite network loss.

Illustrating the RoDiC approach and its state-overlap prin-
ciple, figure 1c shows robust distributed execution of task T
at switches S and D. The state chunks at S and D overlap.
S communicates the state overlap to D in-band.

We apply RoDiC to two problems in traffic monitoring.
First, we focus on computation of flow sizes. Whereas the
previous approximate solutions address lack of memory in

1Rodič means a parent in Czech and other Slavic languages.

a network element by sacrificing exactness of computation,
RoDiC preserves the exactness by utilizing memory in multi-
ple network elements. Second, we discuss how to instantiate
RoDiC for real-time packet-loss telemetry, where distributed
computation at both end elements of the path is inherent
in the task. Our work combines theoretical analysis with
experimentation. We analytically characterize correctness of
the designed algorithms and evaluate them on realistic traffic
traces. We show that our algorithms successfully distribute the
monitoring-task load without imposing significant memory or
computation overhead.

The paper has the following structure. Section II formulates
the problem. Section III presents solutions to compute the flow
sizes for specific kinds of network noise. Section IV examines
robust distributed computation at two elements for a general
model of network noise. Section V analyzes an alternative
general model of network noise. Section VI considers robust
distributed computation at three or more network elements.
Section VII explains how to instantiate RoDiC for robust
real-time telemetry of packet loss. Section VIII reports an
evaluation study. Section IX discusses related work. Section X
sums up the contributions of the paper.

II. PROBLEM FORMULATION

Flow f traverses a network via a series of switches2. At
source switch S, the flow consists of |f | network-layer packets
numbered consecutively from 0 to |f |−1. Because we consider
each flow on the network layer, the original transmission
and retransmission of a data segment by the transport or
application layers appear in the flow as distinct packets. Some
of the subsequent switches assist switch S in distributedly
computing a metric of the flow. Whereas the network might
reorder or lose packets, the objective is to design a distributed
algorithm that correctly computes the metric for all monitored
flows despite such network noise. Each participating switch sm
uses nm bits to maintain its chunk cm of the distributed state.
Switch sm piggybacks at most tm sync bits on each data
packet to communicate control information to the subsequent
participating switch3.

III. EITHER REORDERING OR LOSS

We start by examining the problem instance of distributedly
computing the flow size, i.e., the flow metric is |f |, where
source S and destination D are the only two switches partic-
ipating in the computation. Note that each flow traverses its
source and destination regardless of network routing. Initially,
we consider two specific kinds of network noise: reordering
only and loss only. For either kind, there is a simple robust
algorithm that uses a single sync bit.

Reordering Only (RO): The RO algorithm follows only
the principle of packet grouping and distributes the counting
state between the two switches without overlap. The algorithm
partitions flow f into groups of 2n consecutive packets, with

2For ease of exposition, this paper interchangeably refers to network
elements as switches. The formulation is equally applicable to other types
of network elements.

3We refer to n1 and t1 as simply n and t respectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

flow f :

sync bit:
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 1 0 0

(a) RO: 0102 at S, 0002 at D, and |f | as 0000102 = 2 packets.

flow f :

sync bit:

(b) LO: 0102 at S, 1002 at D, and |f | as 100102 = 18 packets.

0 0 0 0 1 1 1 1 0 0

0 1 2 3 4 5 6 7 8 9

Fig. 2: Vulnerability of the RO and LO algorithms to respec-
tively loss and reordering for n = 3 bits and |f | = 10 packets.

chunk c1 at switch S counting packets within a group, and
chunk c2 at switch D counting the number of full groups. For
each packet, S increments c1 and, only when c1 overflows,
marks the sync bit in the packet. D increments c2 only upon
receiving a packet with the marked sync bit. When the flow
terminates, the algorithm concatenates binary counters c2 and
c1 to compute |f |. While immune to any packet reordering,
the algorithm is vulnerable to losing a single packet. For
n = 3 bits, figure 2a illustrates that when the network loses
packet 7, the RO algorithm incorrectly computes |f | as 2
instead of 10 packets.

Loss Only (LO): To combat packet losses, the LO al-
gorithm complements packet grouping with the principle of
state overlap. The most significant bit (MSB) of c1 and least
significant bit (LSB) of c2 form a 1-bit overlap between
the counting states at switches S and D. The 1-bit overlap
represents the type of a packet group as even or odd. Each
packet carries its group type in its sync bit. We refer to the
other bits of each counting chunk as its own bits. S partitions
flow f into groups of 2n−1 consecutive packets and uses the
n− 1 own bits of chunk c1 to count packets within a group.

In the LO algorithm, S processes each packet by copying
the group type from the MSB of c1 into the sync bit of the
packet and then incrementing c1. Upon receiving a packet, D
increments c2 only if the group type in the LSB of c2 differs
from the sync bit in the packet, i.e., c2 counts how many
times the group type changes. Even without any network noise,
the group type in the LSB of c2 upon the flow termination
can differ from the correct group type that c1 captures in
its MSB. For example, when the flow containing 2n−1 packets
terminates, the group type in c1 already became odd while the
group type in c2 remains even. If the group types in c1 and
c2 differ when f terminates, the LO algorithm increments c2.
Then, the algorithm concatenates all bits of c2 and n− 1 own
bits of c1 to compute |f |.

Without packet reordering, the LO algorithm is assured to
compute the flow size correctly if the network loses at most
2n−1 − 1 consecutive packets. However, reordering by only
one packet can already lead to incorrect computation. For n =
3 bits, figure 2b shows that when the network reorders packets
3 and 4, switch D increments c2 thrice (instead of once) upon
receiving packets 4, 3, and 5, and erroneously computes |f |
as 18 instead of 10 packets.

IV. COMPUTATION ON TWO SWITCHES

Our attention turns now to the general form of network
noise that includes packet reordering and loss. We limit the
solution space to deterministic algorithms, which always pass
through the same sequence of states and produce the same
output upon a particular input. Resilience of such algorithms
is subject to fundamental feasibility limits, e.g., no solution is
able to correctly handle loss of all packets.

First, we consider a consecutive-loss model that constrains
network noise via two parameters. Loss parameter L is the
limit on consecutive packet losses, i.e., switch D receives
at least one of packets i through i + L. Reordering param-
eter R captures the maximal distance of packet reordering,
i.e., switch D can receive packet i before packet j only if
i ≤ j+R. We narrow down the feasibility limits on resilience
in the consecutive-loss model as follows:

Theorem 1. A deterministic RoDiC algorithm cannot guar-
antee correct distributed computation of the flow size on two
switches if L ≥ 1 packet and R ≥ 2n−1 + 1 packets.

Proof. Given any deterministic RoDiC algorithm, we will
construct two flows with different sizes at switch S and two
flow-specific patterns of network noise that yield an identical
sequence of counting states at switch D for both flows.
Because the algorithm has n bits to store its counting state
for a flow at switch S, there are at most 2n such states, and –
starting from some state – the counting follows a cycle of
length l, which is at most 2n states. Without loss of generality,
we suppose that switch S records its entire current counting
state into each packet of the flow.

First, when l is divisible by 4, consider flow A that contains
2n + 3l packets. The last 3l packets of flow A carry the last
three cycles of counting states for the flow at switch S. We
label the packets/states in each cycle sequentially from 1 to l,
denote l/2 as u, and construct the following network noise.
The network loses all u odd-numbered packets in the first cycle
and all u even-numbered packets in the third cycle. Each odd-
numbered packet i among the first l

4 + 1 such packets in the
second cycle arrives to switch D immediately before packet
i + u − 1 from the first cycle. Each even-numbered packet i
among the last l

4 + 1 such packets in the second cycle arrives
to switch D immediately after packet i−u+ 1 from the third
cycle. The network loses the other u − 2 packets from the
second cycle. All the other packets of the flow arrive in order.
For l = 12 states, figure 3a depicts the last 3l packets of
flow A at switch S with the network noise superimposed on
them.

Now, compose flow B from the first 2n + 2l packets of
flow A, i.e., flow B is l packets shorter. The network noise
impacts the last 2l packets of flow B and corresponding last
two cycles of counting states as follows. The network loses
the last l

4 − 1 odd-numbered packets in the first cycle and
first l

4 − 1 even-numbered packets in the second cycle. In the
first cycle, each odd-numbered packet i among the first l

4 + 1
such packets arrives to switch D right before packet i+u−1.
In the second cycle, each even-numbered packet i among the
last l

4 + 1 such packets arrives to switch D immediately after

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

states: 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

` packets ` packets ` packets

(a) The last 3l packets of flow A at switch S with the superimposed network noise.

states: 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

` packets ` packets

(b) The last 2l packets of flow B at switch S with the superimposed network noise.

states: 2 4 1 6 3 8 5 10 7 12 1 6 3 8 5 10 7 12 9 11

(c) The identical packet sequence received by switch D from flows A and B.

Fig. 3: The impact of network noise on flows A and B in the proof of theorem 1 for l = 12 states.

Algorithm 1 Computation of the flow size on two switches
in the consecutive-loss model

1: procedure INITIALIAZTION
2: c1 ← 0; c2 ← 0

3: procedure SOURCE(j)
4: h[j]←

⌊
c1

2n−t

⌋
; c1 ← (c1 + 1) mod 2n

5: procedure DESTINATION(j)
6: diff ← Overshoot(h[j]);
7: if 1 ≤ diff ≤ 2t−1 then c2 ← c2 + diff

8: procedure TERMINATION
9: c2 ← c2 + Overshoot(

⌊
c1

2n−t

⌋
);

10: |f | ← c2 · 2n−t + c1 mod 2n−t

11: function OVERSHOOT(g)
12: return (g − c2 mod 2t + 2t) mod 2t

packet i − u + 1. All the other packets of the flow arrive in
order. Figure 3b illustrates how the network noise affects the
last 2l packets of flow B at switch S when l equals 12 states.

From either flow A or B, switch D receives an identical
sequence of 2n+3u+2 packets with the same counting states.
Figure 3c depicts the last 3u + 2 packets of this identical
received sequence for l = 12 states. Because flows A and B
have different sizes, D cannot guarantee correct distributed
computation of the flow size.

The constructed network-noise patterns include consecutive
loss of only one packet and reordering by at most u + 1
packets. Since u = l/2 is at most 2n−1 packets, correct flow-
size computation cannot be assured if L ≥ 1 packet and
R ≥ 2n−1 + 1 packets. When l is not divisible by 4, we
use similar constructions to establish the theorem.

Theorem 2. A deterministic RoDiC algorithm cannot guar-
antee correct distributed computation of the flow size on two
switches if L ≥ 1 packet and L+R ≥ 2n packets.

Proof. Taking the same general approach as in the proof
of theorem 1, we construct two network-noise patterns and
apply them to two flows with different sizes so that switch D

c1:
t bits n− t bits

in-group counter

switch S

group type

group counter

c2:
switch D

sync bits flow size

Fig. 4: Applying the RoDiC principles of packet grouping
and state overlap to the problem of flow-size computation.

receives an identical packet sequence from either flow. Recall
that starting from some state, the counting by a deterministic
RoDiC algorithm follows a cycle of length l, which is at most
2n states.

Flows A and B contain 2n + 2l and 2n + l packets
respectively. When L is at least l, we achieve the construction
goal by simply discarding the last l packets of flow A. When
L is between 1 and 2n−1 − 1 packets, the L + R constraint
implies R ≥ 2n−1 + 1 packets, and theorem 1 establishes the
result.

Finally, consider L between 2n−1 and l − 1 packets. For
flow A, the network loses packet 2n+L−1 and last l packets
of the flow except packet 2n + l + L − 1. For flow B, the
network reorders packet 2n + L − 1 to deliver it last. The
network delivers all the other packets of the two flows in
order. D receives an identical sequence of packets with the
same counting states from either flow A or shorter flow B
and cannot guarantee correct computation of the flow size. The
constructed network-noise patterns include consecutive loss of
at most max{L− 1, l−L} ≤ L packets and reordering by at
most l−L packets. Hence, L+R is at most l, i.e., 2n packets,
and this establishes the theorem.

While theorems 1 and 2 detect feasibility limits for robust
distributed flow-size computation, we now derive a RoDiC
algorithm that approaches these limits. This algorithm 1 gen-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

group type: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
flow f

group I

possible groups of packet j

0from 2t−1 + 1 to 2t − 1 from 1 to 2t−1overshoot:

c2 remains I c2 advances to J

Fig. 5: Operation of the DESTINATION procedure in algorithm 1 when t = 3, c2 = I , and packet j arrives to D from group J .

eralizes the LO algorithm from section III and follows both
principles of packet grouping and state overlap as depicted
in figure 4. The t MSBs of c1 and t LSBs of c2 form a t-
bit overlap between the counting states at switches S and D.
These t bits specify the type of a group and numbers the group
types sequentially from 0 to 2t − 1. The group size becomes
n− t bits. Switch S uses its own n− t LSBs of c1 to count
packets within a group. Counter c2, including its t LSBs which
capture the group type, tracks the largest group number among
the groups that have delivered a packet to D.

In algorithm 1, S copies the group type from the t MSBs
of c1 into sync bits h[j] of each packet j and then incre-
ments c1 to count this packet. Upon receiving packet j, D uses
arithmetic modulo 2t to compute by how many groups the
group type in h[j] overshoots the group type in the t LSBs
of c2. For example, with t = 3 bits, there are eight group
types numbered from 0 to 7, and type 4 overshoots type 7 by
5 groups. In the absence of network noise, the overshoot is
either 0 or 1 group. With network noise, the overshoot can
become as large as 2t − 1 groups. When the overshoot is 0
or between 2t−1 + 1 and 2t − 1 groups, D ignores packet j
because algorithm 1 assumes that c2 has already accounted
for the group of packet j. When the overshoot is between 1
and 2t−1 groups, the algorithm assumes that packet j arrives
from a later, yet unaccounted group, and D advances c2 by
the amount of the overshoot. For instance, if t equals 3 bits,
the group type in h[j] is 1, and c2 = 7, the overshoot is
2 groups, and D advances c2 to 9. When the flow terminates,
algorithm 1 calculates by how many groups the group type
in c1 overshoots the group type in c2. Then, the algorithm
advances c2 by the amount of the overshoot and concatenates
all bits of c2 and n − t own bits of c1 to compute the flow
size.

Theorem 3. Algorithm 1 is guaranteed to compute the flow
size on two switches correctly if

R ≤ 2n−1−2n−t packets and L+R ≤ 2n−1−1 packets. (1)

Proof. Express |f | as K ·2n−t+m packets where K refers to
the count of full groups, and m is between 0 and 2n−t−1. Be-
cause network noise does not affect computations at switch S,
c1 always correctly captures m and the group type of K, in
its n− t LSBs and t MSBs respectively. Hence, we will prove
the following two properties: (α) upon receiving a packet,
switch D updates c2 to correctly track the largest group
number among the groups that have delivered a packet to D,
and (β) when the flow terminates, algorithm 1 updates c2 to
capture group count K correctly.

First, we prove property α and illustrate this proof for
t = 3 bits in figure 5. Suppose c2 = I where I is either
initial value 0 or the largest group number among the groups
that have delivered a packet to D. Upon receiving packet j
from group J , switch D executes the DESTINATION procedure
that computes by how many groups the group type in h[j]
overshoots group type I mod 2t in c2. If J ≤ I − 1, then
packet j can precede group I at S by at most R packets, J is
between I − 2t−1 + 1 and I − 1 due to the R constraint in
conditions 1, the overshoot is between 2t−1 + 1 and 2t − 1
groups, and D does not change c2. If J = I , then the overshoot
equals 0, and D does not change c2 either. If J ≥ I + 1,
then packet j is the first packet that D receives from a group
numbered larger than I . Hence, at most L+R packets separate
group I and packet j at switch S (in the worst case, the
network loses the first L of these packets and delivers the next
R packets to D after packet j), J is between I+1 and I+2t−1

due to the L+ R constraint in conditions 1, the overshoot is
between 1 and 2t−1 groups, and c2 advances from I to J to
correctly track the largest group number among the groups
that have delivered a packet to D.

To prove property β upon the flow termination, consider
c2 = I where I either captures the largest group number
among the groups that have delivered a packet to D or equals 0
if D has not received any packets from the flow. Then, |f | is
at least I · 2n−t packets because the flow contains at least
I full groups 0 through I − 1. On the other hand, |f | is at
most (I + 1) · 2n−t + L + R packets, which occurs when
the flow contains I + 1 full groups 0 through I followed by
L + R lost packets (i.e., when the maximum network noise
includes loss only with R = 0 and L = L + R). Due to the
L+R constraint in conditions 1, |f | is between I · 2n−t and
(I + 2t−1) · 2n−t + 2n−t − 1 packets. Hence, group count K
is between I and I + 2t−1, i.e., the overshoot is between 0
and 2t−1 groups. The TERMINATION procedure computes this
overshoot and updates c2 from I to K.

Parameter t, which captures the number of sync bits,
controls a trade-off between the communication overhead and
assured reordering resilience of algorithm 1. With t = 1 bit,
the algorithm is the same as the LO algorithm from section III
and guaranteed to compute the flow size correctly when the
network loses at most 2n−1 − 1 consecutive packets and
does not reorder any packets. When t increases from 1 to 2
bits, the assured reordering resilience jumps to 2n−2 packets.
Subsequent increments of t exhibit a diminishing marginal
utility: each such increment cuts by half the number of packets
added to the assured reordering resilience. When t is n bits,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1
2
3
4

5
6

7

8
9

10

L

R

RO algorithm
t = 1 bits, LO algorithm

t = 2 bits
t = 3 bits

t = 4 bits
infeasible

Fig. 6: Assured resilience of algorithms 1, LO, and RO to
network noise in the consecutive-loss model and feasibility
limits established by theorems 1 and 2 for n = 4 bits.

i.e., c1 uses all its bits to track the group type only, the assured
reordering resilience is 2n−1 − 1 packets, i.e., not even twice
larger than with t = 2 bits. Hence, we recommend setting t
to 2, 3 or 4 bits in practice.

As t increases, the correct computation by algorithm 1 is
assured for a strictly expanding set of (L,R) values. If the
algorithm is guaranteed to compute the flow size correctly for
specific values of L and R, then the guarantee also holds with
any larger t. Figure 6 illustrates this property of algorithm 1
when n equals 4 bits. The figure also depicts the (L,R)
settings where the RO and LO algorithms are guaranteed
to operate correctly, as well as the (L,R) feasibility limits
established by theorems 1 and 2.

Even small numbers of sync bits support high levels of
assured resilience to network noise. For example, n = 8 bits
and t = 2 bits ensure correct computation with R by up to
64 packets and L+R up to 127 packets. Doubling t to 4 bits
increases the assured reordering resilience of algorithm 1 to
112 packets.

V. IMPACT OF NOISE REPRESENTATION

While the consecutive-loss model from section IV repre-
sents maximum network noise in terms of its local impact
on a flow, this section considers an alternative representation
linked to global properties of the packet sequence received
by switch D from the flow. Inheriting the constraint of
reordering by at most R packets, the new model does not
impose an explicit limit on consecutive packet loss and instead
characterizes the received packet sequence via a span notion.
Defined in regard to the partition of flow f at switch S into
groups of 2k consecutive packets, a span(γ, k) refers to a
subsequence of the packets at S that arrive to D in order, omit
at most γ full groups at the beginning of the flow, and miss
at most γ − 1 full consecutive groups after any packet in this
subsequence. Figure 7 depicts four instances of a span(2, 2)
for a flow that consists of 20 packets. The span-based model
constrains network noise via reordering parameter R and span
existence.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(a) The flow at switch S and network noise.

8 5 7 3 13 14 15 18 10 19

(b) The packet sequence received by switch D.

7 14 10 19 8 13 5 7 13 14 15 18 19

(c) Four instances of a span(2, 2).

Fig. 7: Span examples for a flow of 20 packets.

A span(γ, k) is also a span(γ+1, k). Hence, infeasibility of
assuredly correct flow-size computation despite existence of a
span(γ, k) implies such infeasibility with existing spans that
have larger γ values. It also implies that enabling of assuredly
correct computation necessitates existence of a span with a
smaller γ value. Without packet reordering, the span-based
model of maximum network noise comes with the following
feasibility limits.

Lemma 1. When k is at least 1 bit, existence of a
span(2n−k, k) is insufficient for a deterministic RoDiC algo-
rithm to guarantee correct distributed computation of the flow
size on two switches if R ≥ 0.

Proof. We follow the same general approach as in the proof
of theorem 1. Starting from some state, the counting by a
deterministic RoDiC algorithm follows a cycle of length l,
which is at most 2n states. Flows A and B contain 2n + 1 + l
and 2n + 1 packets respectively. The network loses the last
l packets of flow A and delivers all other packets of both
flows in order. D receives an identical sequence of 2n + 1
packets with the same counting states from either flow A or
shorter flow B and cannot guarantee correct computation of
the flow size. Because packet 2n is the last packet received
by D, and k is at least 1 bit, the group of packet 2n in flow A
also includes packet 2n + 1, which is lost. Since l is at most
2n, the l lost packets at the end of flow A contain at most
2n−k− 1 full groups. Thus, the first 2n + 1 packets of flow A
form a span(2n−k, k) for both flows A and B, and there is
no reordering.

Due to the infeasibility result in lemma 1, we subsequently
consider only spans where γ is at most 2n−k−1 groups. With
reordering, the infeasibility limits become as follows.

Theorem 4. Existence of a span(γ, k) is insufficient for a de-
terministic RoDiC algorithm to guarantee correct distributed
computation of the flow size if R ≥ 2n − γ · 2k + 1 packets.

Proof. Using once again the technique from the proof of
theorem 1, suppose that the counting cycle of a deterministic
RoDiC algorithm has length l, which is at most 2n states.
Flows A and B contain 2n+2l and 2n+l packets respectively.

Let Z = γ · 2k refer to the number of packets in γ full
groups. When l mod Z is at least 2 packets, consider the
last 2l packets of flow A, which carry the last two cycles
of counting states. We label the packets/states in each cycle
sequentially from 1 to l and denote bl/Zc as u. From the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

states: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

` packets ` packets

(a) The last 2l packets of flow A at switch S with the superimposed network noise.

states: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

` packets

(b) The last l packets of flow B at switch S with the superimposed network noise.

states: 6 12 18 21 5 11 17 20

(c) The identical packet sequence received by switch D from flows A and B.

Fig. 8: The impact of network noise on flows A and B in the proof of theorem 4 for l = 21 states, γ = 3 groups, and k = 1 bit.

algorithm 2 infeasible

1 2
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

γ

R

1 2 3 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

γ

R

1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

γ

R

(a) t = 1 bits (b) t = 2 bits (c) t = 3 bits

Fig. 9: Assured resilience of algorithm 2 to network noise
in the span-based model and feasibility limits established by
lemma 1 and theorem 4 for n = 4 bits.

first cycle, D receives packet l and u packets i such that i is
divisible by Z. From the second cycle, D receives packet l−1
and first u packets j such that j + 1 is divisible by Z. The
above packets as well as first 2n packets of flow A arrive to
D in order. The network loses all the other packets of the
flow. For l = 21 states, γ = 3 groups, and k = 1 bit, i.e.,
Z = 6 packets, figure 8a depicts the last 2l packets of flow A
at switch S with the packet losses superimposed on them.

Flow B consists of the first 2n+l packets of flow A. Among
the last l packets of flow B, packet l− 1 and first u packets j
such that j+ 1 is divisible by Z arrive to D in order, packet l
and u packets i such that i is divisible by Z arrive immediately
before packet min{Z, l} − 1 in their original order, and the

Algorithm 2 Computation of the flow size on two switches
in the span-based model

1: procedure DESTINATION(j)
2: diff ← Overshoot(h[j]);
3: if 1 ≤ diff ≤ γ then c2 ← c2 + diff

other l−2u−2 packets are lost. The network delivers the first
2n packets of flow B in order. For the above example with
l = 21 states, figure 8b shows the last l packets of flow B at
switch S with the network noise superimposed on them.

From either flow A or B, switch D receives an identical
sequence of 2n+2u+2 packets with the same counting states.
Figure 8c depicts the last 2u + 2 packets of this identical
received sequence for the above example. Because flows A
and B differ in size, D cannot guarantee correct distributed
computation of the flow size.

For flow A, the received packet sequence contains gaps of at
most Z−1 consecutive packets, i.e., at most γ−1 full groups,
and there is no reordering. Hence, the 2n + 2u + 2 received
packets form a span(γ, k) for flow A. For flow B, the first
2n packets, together with packet l − 1 and first u packets j
such that j + 1 is divisible by Z among the last l packets,
arrive in order, leave gaps of at most Z − 1 packets and thus
form a span(γ, k), and reordering is at most by l − Z + 1 ≤
2n−γ ·2k+1 packets. Our constructions are similar and reach
the same conclusion when l mod Z is at most 1 packet.

In theorem 4, parameter γ controls a trade-off between
span existence and reordering constraint. When group size k
equals n − t bits, and t is fixed, figure 9 illustrates how an
increase in γ facilitates existence of a span(γ, k) and tightens
the R constraint. Increasing t relaxes the feasibility limits
in both γ and R dimensions. With γ = 2t−1 groups, the
reordering constraint in theorem 4 for the span-based model is
R ≥ 2n−1 + 1 packets, i.e., the same as in theorem 1 for the
consecutive-loss model. As we will see later, the span-based
model not merely generalizes the consecutive-loss model via
parameter γ but characterizes maximum network noise more
effectively.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

group type: 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
flow f

group I

possible groups of packet j

0from γ + 1 to 2t − 1 from 1 to γ from γ + 1 to 2t − 1overshoot:

c2 remains Ic2 remains I c2 advances to J

Fig. 10: Operation of algorithm 2 when t = 3 bits, γ = 2 groups, c2 = I , and packet j arrives to D from group J .

We now present and analyze algorithm 2 which meets the
feasibility limits established by theorem 4. Algorithm 2 uses
k = n − t and differs from algorithm 1 only in its updated
DESTINATION procedure that advances c2 if the overshoot is
between 1 and γ groups.

Theorem 5. When γ is at most 2t − 1 groups, algorithm 2 is
assured to compute the flow size on two switches correctly if

∃ a span(γ,n− t) and R ≤ 2n− (γ+ 1) ·2n−t packets. (2)

Proof. Similarly to the proof of theorem 3, we express |f | as
K · 2n−t +m packets and prove two properties: (α) when D
receives a packet from group J , c2 advances from its current
value I to J if and only if J is between I + 1 and I + γ, and
any packet received from a group numbered I + 1 or larger
before c2 advanced to I does not belong to a span(γ,n− t),
and (β) when the flow terminates, algorithm 1 updates c2 to
capture group count K correctly.

We start by proving property α and illustrate this proof for
t = 3 bits and γ = 2 groups in figure 10. Suppose c2 = I
where I is either initial value 0, or such that c2 advanced to I
from a value between I−γ and I−1 upon receiving packet i
from group I , and any packet received from a group numbered
I + 1 or larger before c2 advanced to I does not belong to a
span(γ,n− t). When D receives packet j from group J , the
DESTINATION procedure calculates by how many groups the
group type in h[j] overshoots group type I mod 2t in c2. If
J ≤ I − 1, then packet j can precede group I at switch S by
at most R packets, J is between I − 2t + γ+ 1 and I − 1 due
to the R constraint in conditions 2, the overshoot is between
γ+ 1 and 2t− 1 groups, and switch D does not change c2. If
J = I , then the overshoot equals 0, and D does not change c2
either.

If J ≥ I + 1, let Y refer to the packets of groups I + 1
through I + γ. Because any packet received from a group
numbered I + 1 or larger before c2 advanced to I does not
belong to a span(γ,n − t), and since any span(γ,n − t)
includes at least one of packets Y by the definition of a span,
let y refer to the first such packet that arrives to D after c2
advanced to I . Packet j is either y or another packet z received
by D before y and belonging to a group numbered I + γ + 1
or larger. If j is z, packet z can surpass y at S by at most
R packets, J is between I + γ + 1 and I + 2t − 1 due to the
R constraint in conditions 2, the overshoot is between γ + 1
and 2t − 1 groups, and D does not change c2. If j is y, i.e.,
J is between I + 1 through I + γ, the overshoot is between 1
and γ groups, c2 advances from I to J . Because all packets
of a span by definition arrive to D in order, and since y is

the first packet received from groups I+ 1 through J that can
belong to a span(γ,n− t), any packet received from a group
numbered J + 1 or larger before c2 advanced to J does not
belong to a span(γ,n− t).

To prove property β, observe that property α in combination
with the existence of a span(γ,n− t) implies that c2 upon the
flow completion is between K−γ and K. The TERMINATION
procedure computes the overshoot between 0 and γ groups and
sets c2 to K.

In algorithm 2, as in algorithm 1 before, parameter t
offers a trade-off between the communication overhead and
assured resilience to network noise. The following theorem
characterizes how the guaranteed resilience improves when the
algorithm uses more sync bits. For t increasing from 1 to 2
and then 3 bits, figure 9 illustrates this expansion of the (γ,R)
settings where algorithm 2 guarantees correct computation of
the flow size.

Theorem 6. Correct computation of the flow size on two
switches by algorithm 2 remains assured if the values of t
and γ change to t+ 1 and 2γ + 1 respectively.

Proof. If the values of t and γ change to t + 1 and 2γ + 1
respectively, the R constraint in conditions 2 remains the same
because 2n−(γ+1)·2n−t equals 2n−((2γ+1)+1)·2n−(t+1).
Also, due to the reduction of k from n − t to n− (t+ 1),
groups become twice shorter, γ full groups at the beginning
of a flow become at most 2γ + 1 full reduced groups, and
γ− 1 full groups after any packet in the flow become at most
2γ = (2γ+1)−1 full reduced groups. Hence, a span(γ, n−t)
is also a span(2γ+ 1, n− (t+ 1)). Conditions 2 remain valid
and guarantee the correct computation by algorithm 2.

Algorithm 2 generalizes algorithm 1 via parameter γ. When
γ equals 2t−1 groups, algorithms 1 and 2 are the same. This
property enables the following theorem to compare the span-
based and consecutive-loss models in regard to the conditions
that assure correct flow-size computation by the algorithm in
these models.

Theorem 7. For assuring the correct flow-size computation,
the span-based model characterizes maximum network noise
more effectively than the consecutive-loss model.

Proof. With γ = 2t−1 groups, algorithms 1 and 2 are iden-
tical, and conditions 1 and 2 impose the same R constraint.
Consider the packet sequence received by D from a flow when
conditions 1 hold. From this sequence, extract all packets such
that algorithm 1 advances c2 upon the arrival of the packet
to D. By construction in theorem 3, these packets form a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

span(γ, n− t) because they arrive to D in order, and at most
γ − 1 full groups are missing at the beginning of the flow
and after any packet in this constructed subsequence. Hence,
conditions 2 also hold.

While conditions 1 imply conditions 2, the reverse is not
true. If D receives only the last packet from a flow that
consists of (γ+ 1) · 2n−t packets, then there is no reordering,
the received packet forms a span(γ, n − t), and the L + R
constraint in conditions 1 does not hold. For n = 4 bits,
t = 3 bits, and γ = 4 groups, figures 6 and 9c illustrate
this scenario: D receives only the last packet from a flow
that consists of 10 packets, L = 9 packets, R = 0, and
the correct computation of the flow size by the algorithm
is assured by theorem 5 but not by theorem 3. Thus, for
assuring the correct flow-size computation, the span-based
model characterizes maximum network noise more effectively
than the consecutive-loss model.

Parameter γ affects loss tolerance of algorithm 2. When γ is
only 1 group, the algorithm is guaranteed to be robust against
loss of all packets in group 0 and all but one packet in each of
the subsequent groups, the assured reordering resilience is 2n−
2n−t+1 packets, and D advances c2 upon receiving a packet
from the next group only. Figure 10 shows that as γ increases,
D starts advancing c2 upon receiving packets from groups
farther away, the assured reordering resilience decreases, and
the same amount of packet loss poses a smaller danger for
existence of a span(γ, n− t). When γ becomes 2t−1 groups,
algorithm 2 increases its guaranteed loss resilience to 2n −
2n−t − 1 consecutive packets without assuring any resilience
to reordering.

If conditions 2 do not hold, algorithm 2 still might be able
to compute the flow size correctly. This can happen because
conditions 2 are unnecessarily tight. For example, without
affecting the correctness guarantees, we can relax conditions 2
so that the definition of a span allows omitting at most 2t−2,
rather than γ− 1, full groups after the last packet in the span.

When network noise violates conditions 2, and algorithm 2
computes the flow size incorrectly, the algorithm underesti-
mates |f |. The following theorem establishes an upper bound
on such underestimation.

Theorem 8. If γ is at least 2t−1 groups, the network loses X
packets of the flow, reordering R is at most 2n−(γ+1) ·2n−t
packets, and a span(γ, n− t) does not exist, then algorithm 2
underestimates the flow size by at most 2t

2γ+1−2t ·X packets.

Proof. Consider packet i from group I and packet j from
group J that consecutively advance c2. The R constraint
ensures j > i and thus implies that algorithm 2 never
overestimates |f |. Express J as I + a · 2t + b groups where
a is a nonnegative integer, and b is between 0 and 2t − 1.
Upon receiving packet j, switch D advances c2 by b groups
and fails to account for a ·2t groups. Since i and j advance c2
consecutively, at least a · γ of these unaccounted a · 2t groups
are lost or arrive to D before packet i. At most 2t − γ − 1
groups that succeed i at S can arrive to D before i. Thus, at
least a · γ − (2t − γ − 1) of the unaccounted a · 2t groups
are lost. The ratio of the unaccounted packets to the lost

switch S
c1:

n1 bits

t1 bits

n2 bits

t1 bitst2 bits

c2:switch s2

sync bits

n3 bits

t2 bits

c3:
switch D

sync bits
flow size

Fig. 11: Computation of the flow size on p = 3 switches.

packets is at most a·2t
a·γ+γ+1−2t , which is bounded from above

by 2t

2γ+1−2t when a equals 1. This upper bound holds for the
entire flow, including before the first advancement, between
two consecutive advancements, and after the last advancement
of c2. Hence, algorithm 2 underestimates the flow size by at
most 2t

2γ+1−2t ·X packets.

For γ = 2t − 1 groups, the upper bound on the flow-size
underestimation in theorem 8 is 1

1− 1
2t
·X packets.

We conclude the section by quantitatively illustrating the
assured resilience of algorithm 2 to network noise. When
n = 8 bits, t = 2 bits, and γ = 1 group, algorithm 2 is
guaranteed to compute the flow size correctly if a span(1, 6)
exists with reordering by at most 128 packets. With t increased
to 3 bits, the computation correctness is assured if a span(1,
5) exists, and reordering is at most by 192 packets. When
n and t remain at 8 and 3 bits respectively, and γ increases
to 6 groups, the assuredly correct computation comes with
existence of a span(6, 5) and reordering by at most 32 packets.
To illustrate theorem 8 when conditions 2 do not hold, the
choice of t = 2 bits and γ = 2 groups guarantees that
algorithm 2 underestimates the flow size by at most 4 · X
packets. With t = 3 bits and γ = 6 groups, the flow-size
underestimation is at most by 1.6 ·X packets.

VI. COMPUTATION ON THREE OR MORE SWITCHES

This section generalizes our earlier results to support robust
distributed computation of the flow size on more than two
switches. With s1 and sp referring to switches S and D
respectively, and m varying from 1 to p, the flow traverses
a sequence of p switches sm and potentially utilizes multiple
paths between each pair of consecutive switches. For p = 3
switches, figure 11 illustrates how the p switches maintain a
distributed counter for the flow.

We employ the span-based model to represent maximum
network noise for each of the p − 1 stretches from S to sm,
where m varies from 2 to p. Instead of γ, we use γm−1

for characterizing how network noise affects the flow at S
to produce the packet sequence received by sm. Whereas
Rm−1 refers to the reordering parameter for the stretch that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Algorithm 3 Computation of the flow size on three or more
switches in the span-based model

1: procedure INITIALIAZTION
2: for m = 1, . . . , p do cm ← 0

3: procedure INTERNAL(j, m)
4: diff ← Overshoot(h[j],m);
5: if 1 ≤ diff ≤ γm−1 then cm ← (cm+diff) mod 2nm ;
6: h[j]←

⌊
cm

2nm−tm

⌋
7: procedure DESTINATION(j)
8: diff ← Overshoot(h[j], p);
9: if 1 ≤ diff ≤ γp−1 then cp ← cp + diff

10: procedure TERMINATION
11: for m = 2, . . . , p do
12: cm ← cm + Overshoot(

⌊
cm−1

2nm−1−tm−1

⌋
,m);

13: |f | ← cp;
14: for m = p− 1, . . . , 1 do
15: |f | ← |f | · 2nm−tm + cm mod 2nm−tm

16: function OVERSHOOT(g, m)
17: return (g − cm mod 2tm−1 + 2tm−1) mod 2tm−1

reaches sm, packet i may arrive to sm before packet j only if
i ≤ j +Rm−1.

Algorithm 3 is our RoDiC solution for the generalized
problem. The tm−1 MSBs of chunk cm−1 and tm−1 LSBs
of chunk cm form an overlap between the counting states at
sm−1 and sm. The tm−1 sync bits in each packet sent by
sm−1 carry the group type of the packet on the hop to sm.
Algorithm 3 inherits the SOURCE procedure from algorithms 1
and 2. When packet j arrives to sm where m is between 2
and p−1, the INTERNAL procedure computes the overshoot of
the group type in h[j]. If the overshoot is between 1 and γm−1

groups, sm advances cm modulo 2nm packets. After resetting
the sync bits in packet j to the tm MSBs of cm, the INTERNAL
procedure forwards the packet into the next hop. Thus, unlike
in the SOURCE procedure, the INTERNAL procedure advances
cm before setting the sync bits in the sent packet to track
the last packet that advanced cm. The DESTINATIONUPDATE
procedure remains essentially the same as in algorithm 2, with
γ and c2 being renamed to γp−1 and cp respectively. When
the flow terminates, the TERMINATION procedure iteratively
assembles all the cm counters to compute the flow size.

In algorithm 3, each stretch of switches from S to sm
maintains a distributed subcounter that consists of Nm =

nm+
m−1∑
k=1

(nk − tk) bits. Hence, the overall distributed counter

can count flow sizes up to 2Np packets.

Theorem 9. Algorithm 3 computes the flow size on p switches
correctly if, for each m between 2 and p, there exists a
span(γm−1,Nm−1 − tm−1) at sm where the span packets
are the packets that advance cm−1, and Rm−1 < 2Nm−1 −
(γm−1 + 1) · 2Nm−1−tm−1 packets.

Proof. To prove that switch sm advances its chunk cm cor-
rectly, we interpret the stretch of switches from s1 to sm
as a two-switch counter where sm acts as the destination

switch, the stretch of switches from s1 to sm−1 represents the
source switch, and γm−1 groups, Rm−1 packets, tm−1 sync
bits determine the resilience settings. By combining chunks c1
through cm−1, the integrated source switch maintains a counter
with Nm−1 bits. We iteratively apply theorem 5 for m from
2 to p and establish the result for the spans where the packets
are the packets that advance cm−1.

Flow-size computation on p switches involves a number of
parameters. Each configuration of algorithm 3 needs to specify
size nm for chunks c1, . . . , cp, numbers t1, . . . , tp−1 of the
sync bits, and values γ1, . . . , γp−1. In practice, the most impor-
tant decision is to select the t1 and γ1 values because the most
frequent state updates occur on the hop from S to s2, with the
update frequency declining exponentially on each subsequent
hop. For example, consider computation on three switches
where the first two maintain seven-bit counter chunks. Setting
t1 to 3 sync bits implies R1 + 16 · γ1 ≤ 112 packets.
Increasing t1 does not significantly improve the situation
because theorem 4 rules out a deterministic RoDiC algorithm
that guarantees correct computation for R1+2n1−t1 ·γ1 ≥ 129
packets. Setting γ1 to 5 groups leads to R1 = 40 packets and
the constraint that network noise does not completely alter
at least 1 out of 5 consecutive groups of 16 packets. This is
reasonable in practice. For internal switch s2, even the setting
with t2 = 2 sync bits and γ2 = 2 groups produces R2 = 512
packets and 2N2−t2 · γ2 = 1024 packets.

The above example unveils that communication quality
on the first hop is the most important, whereas subsequent
switches are amenable to more economical use of their re-
sources because network noise creates weaker impacts on later
hops. This property holds in general, implying that the source
switch should get the largest counter chunk, and the chunks
at later switches can be made smaller. For example, if we
increase the chunk at S to 9 bits and decrease the chunk at
s2 to 5 bits, the network-noise constraints at s3 remain the
same but the network-noise constraints on the first hop are
significantly and usefully relaxed to R1+64·γ1 ≤ 448 packets.

VII. REAL-TIME TELEMETRY OF PACKET LOSS

While our paper mostly focuses on computation of the flow
size, this section briefly discusses application of the RoDiC
approach to real-time telemetry of packet loss, a different kind
of monitoring tasks. Because computation of the packet loss
over a path has to involve both ends of the path, packet-loss
telemetry is an intrinsically distributed task. Specifically, we
seek to measure the packet loss of flow f on its path from
source S to destination D. Furthermore, telemetry in real time
necessitates measuring the packet loss at a finer granularity
than the entire flow duration [11]–[14].

In instantiating the RoDiC principles of packet grouping and
state overlap for real-time packet-loss telemetry, we inherit
and complement the elements of our flow-size computation
solution. While we similarly partition f at S into groups of
consecutive packets, our real-time telemetry design measures
packet loss at the granularity of groups. The group size is
fixed in advance to be the same for all groups. The group

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Z1(n, 2) E1(n, 2) Z1(n, 3) E1(n, 3) Z2(n, 2) E2(n, 2) Z2(n, 3) E2(n, 3)

2 4 6
0

2

4

6

8

10
·10−2

(a) γ,n = 5, t = 3

N
o.

flo
w

s
(r

el
at

iv
e)

0.8 1 1.2
0

5

10

·10−2

(b) β,n = 5

20 40
0

2

4

6

8
·10−2

(c) Buffer size ∆,n = 5

5 10 15 20
0

2

4

6

·10−2

(d) Flowlet size F ,n = 5

2 4 6
0

0.5

1

1.5

2
·10−3

(e) γ,n = 6, t = 3

N
o.

flo
w

s
(r

el
at

iv
e)

0.8 1 1.2
0

2

4

6

·10−3

(f) β,n = 6

20 40
0

0.5

1

1.5

·10−3

(g) Buffer size ∆,n = 6

5 10 15 20
0

1

2

·10−3

(h) Flowlet size F ,n = 6

Fig. 12: Numbers Z1 and Z2 of flows violating conditions 1 and 2 respectively, and numbers E1 and E2 of flows with sizes
calculated incorrectly by algorithms 1 and 2 respectively, as functions of γ, β, buffer size ∆, and flowlet size F ; the source
counter chunks are sized to: (a)-(d) n = 5 bits and (e)-(f) n = 6 bits.

type serves again as the overlap between the counting states
at S and D. Each packet carries the group type in the sync bits
to ensure that D correctly tracks G, the largest group number
among the groups that have delivered a packet to D. Compared
to the flow-size application, the packet-loss telemetry design
maintains additional state at D for a certain number of groups.
These groups include and immediately precede group G and
are such that D does not yet assuredly know how many packets
it ends up receiving from the group. For each of the earlier
groups, our solution computes the packet loss for the group
by subtracting from the group size the final number of packets
received by D. We will elaborate and evaluate the above design
for real-time packet-loss telemetry in our future work.

VIII. EXPERIMENTAL EVALUATION

Methodology. Our evaluation follows the same approach
as those for VL2 [18], pFabric [19], and pHost [20]. Specifi-
cally, we perform simulations driven by realistic traffic traces
generated from the data-mining distribution of flow sizes [18],
where the number of flows is 106, and the maximum possible
flow size of 2

3 ·106 packets, which requires a 20-bit counter. We
utilize the YAPS packet simulator in its unreliable transport
configuration [21]. The network has a two-tier multi-rooted
tree topology where four switches constitute the root. 90% of
all flows traverse three internal switches on their way from the
source to the destination. By default, YAPS sprays packets of
each flow by probabilistically sending the packets to different
internal switches in accordance with a chosen load-balancing
strategy. The packet spraying causes packet reordering. Our
simulation code is publicly available [22].

We repeat the simulations for different congestion levels by
varying parameter β that scales the expected time between
the transmissions of two consecutive packets from the same

source. Smaller values of β lead to larger congestion. We
also evaluate different values of buffer size ∆ in the switches
along the flow paths. Flowlet size F parameterizes the packet-
spraying strategy: for every group of F consecutive packets,
the internal switch is chosen according to the round-robin
strategy. Our standard experiment uses the following default
parameter values: β = 1, ∆ = 24 packets, and F = 1 packet.
To understand the size required for the counter chunks in
source switches, we experiment with different values of β,
∆, and F . In these experiments, 7 bits for the source-counter
chunk are sufficient, reducing the source counter-chunk size
by 65% and 78% for 20-bit and 32-bit counters respectively.

The experiments track the following metrics: [1] number
Z1(n, t) of flows that violate conditions 1 with n-bit source
counter chunks and t sync bits, [2] number E1(n, t) of flows
for which algorithm 1 computes the flow size incorrectly,
[3] number Z2(n, t) of flows that violate conditions 2, and
[4] number E2(n, t) of flows for which algorithm 2 miscalcu-
lates the flow size. These metrics are normalized to the number
of flows sized to at least 2n packets. For other flows, the
counter fits in the source switch entirely. Since 7-bit counter
chunks on source switches are already sufficient, we compute
the metrics for n of 5 and 6 bits. t is equal to 2 or 3 sync
bits. In the experiments where γ is not specified explicitly, we
choose such a γ value that leads to the minimal value of the
corresponding metric.

Dependency on γ. Figures 12a and 12e show how Z2

and E2 depend on γ for t = 3 in the standard experiment.
The effect of packet loss is more pronounced than packet
reordering, and Z2 and E2 decrease when γ increases up to 6.
For γ = 2t−1 = 7, Z2 and E2 increase drastically because
any packet reordering violates conditions 2. For γ = 7,
we have Z2 > E2 since conditions 2 are usually violated
by packet reordering, which does not necessarily lead to an

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

invalid counter value. For γ ≤ 6, we have Z2 = E2 because
conditions 2 are violated only by absence of span(γ,n − t),
which always results in incorrect counting by algorithm 2.

For n = 5 and optimal γ, we have Z2(5, 3) = E2(5, 3) =
7·10−3, meaning that it is sufficient to maintain a 5-bit source-
counter chunk for 99.3% of flows with at least 32 packets. For
n = 6 and optimal γ, the outcome improves further as only
one flow does not satisfy conditions 2.

In figures 12a and 12e, Z1 and E1 appear as horizontal
lines because they do not depend on γ. For n = 5, we
have Z1(5, 3) = 5.5 · 10−2 and E1(5, 3) = 4.2 · 10−2,
i.e., 94.5% of the flows with at least 32 packets satisfy
conditions 1, and algorithm 1 computes the flow sizes correctly
for 95.8% of the flows. Hence, the number of flows for which
algorithm 2 computes sizes incorrectly is 6+ times lower
than for algorithm 1. For n = 6, this gap widens further as
algorithm 1 errs for few hundreds of flows while algorithm 2
fails for only one flow. The difference observed for Z1(5, 3) vs.
Z2(5, 3) with γ = 4 corroborates theorem 7 by showing that
our second representation of network noise is more expressive
than the first one: only 76% of the flows violating conditions 1
also violate conditions 2.

Dependency on β. Figures 12b and 12f exhibit how the
examined metrics depend on β for buffer size ∆ = 24 packets
and flowlet size F = 1 packet. As β increases, network
congestion and all the metrics decrease. Specifically, as β
grows to 1.25, Z2(5, 2) decreases by 40%, Z2(5, 3) plummets
by a factor of two, E2(5, 2) drops by 50%, and Z2(6, 2) and
E2(6, 2) lower by 65%. For each evaluated setting of β, the
number of flows that violate conditions 2 for n = 6 and t = 3
does not exceed 13. With β ≥ 1.1875, the number of such
flows is strictly zero, implying that 6-bit source-counter chunks
are sufficient for all flows.

For any β value, equalities Z2(6, 3) = E2(6, 3), Z2(6, 2) =
E2(6, 2), and Z2(5, 3) = E2(5, 3) hold, and γ = 2t − 2 is
optimal for these metrics. This is because traffic patterns that
violate existence of span(γ,n− t) in conditions 2 always lead
to incorrect flow-size computation by algorithm 2. E1(5, 2) =
Z2(5, 2) and E1(6, 2) = Z2(6, 2) arise because algorithms 1
and 2 are identical for optimal γ = 2t−1.

On the other hand, E2(5, 2) < Z2(5, 2) since the optimal γ
for E2(5, 2) is 3 rather than 2. Under any packet reordering
with this γ value, all flows violate the packet-reordering
constraint in conditions 2, which does not necessarily cause
incorrect computation of flow sizes by algorithm 2. Also, as t
increases, the number of flows that violate conditions 1 does
not change since the packet-reordering constraint holds for all
flows even for t = 2, and the constraint on L + R does not
depend on t.

By comparing E1(5, 2) and E1(5, 3), we can see advantages
provided by our second representation of network noise.
Although conditions 1 loosen as t grows, the number of flows
for which algorithm 1 computes incorrect sizes increases as t
steps up from 2 to 3, i.e., E1(5, 3) > E1(5, 2). This happens
because flows that satisfy conditions 2 for γ = 2t−1 and
violate conditions 1 may violate conditions 2 for t + 1 sync
bits and γ = 2t. According to theorem 6, all such flows satisfy
conditions 2 for t+ 1 sync bits when γ is 2t + 1.

Dependency on buffer size ∆. Figures 12c and 12g plot
the dependencies of the examined metrics on buffer size ∆
for β = 1 and F = 1 packet. As the buffer size decreases, all
the metrics rise but at lower rates than in response to changes
in β. For ∆ = 9, Z1(5, 2) increases by 27%, Z2(5, 3) and
E2(5, 3) grow by less than 1.5%, and Z1(6, 2) rises by 15%.
For each evaluated β value, the number of flows that violate
conditions 2 with n = 6 and t = 3 is smaller than 4. In
general, the plots in figure 12c are much smoother than in
figure 12g because the absolute metric values are much higher
for n = 5 bits, and the randomness in the number of flows
that violate the corresponding conditions affects the curves
less. A similar observation holds for figures 12b and 12d vs.
figures 12f and 12h.

Dependence on flowlet size F . Figures 12d and 12h reveal
effects of flowlet size F on the assessed metrics when β and ∆
are 1 and 24 respectively. As F grows from 2 to 20 packets, the
metrics increase, reflecting the increased network noise. When
F reaches 20 packets, Z2(5, 3) and E2(5, 3) rise by more than
thrice, Z1(6, 2) increases by about 2.5 times, and Z2(5, 2) and
E2(5, 2) grow by only 5%. However, as F steps down from
2 packets to 1, the metrics surge abruptly, and Z2(5, 2) and
E2(5, 2) reach their maximum values with F = 1 packet.
This effect can be due to the increased loss probability when
packets of the same flow follow one path rather than many.

Also, as F increases, the impact of packet reordering
becomes more perceptible. Unlike what we have seen before,
γ = 2 with F ≥ 2 is also optimal for Z2(5, 2) and
E2(5, 2) because packet reordering becomes so common that
algorithm 2 with parameters n = 5, t = 2, and γ = 3 starts to
compute incorrect sizes for many flows. For the same reason,
Z2(5, 3) and E2(5, 3) begin to grow quickly with F = 8
packets and have the optimal γ value of 5 (rather than 6)
with F = 14 packets.

Accuracy of algorithm 2. When algorithm 2 computes the
size of flow f incorrectly because span(γ,n−t) does not exist,
theorem 8 states that the computed flow size with γ ≥ 2t−1

lies in interval [|f | − 2tX
2γ+1−2t , |f |], where X is the number

of lost packets. In the standard experiment with n of 5 or 6,
t of 2 or 3, and 2t−1 ≤ γ < 2t − 1, algorithm 2 can err only
due to lack of span(γ,n − t). In such cases, the computed
flow size for any flow belongs to interval [|f | −X, |f |] with
n = 6 and falls outside interval [|f | − X, |f |] for at most 9
flows with n = 5. For γ = 2t−1, algorithm 2 fails mostly due
to excessive packet reordering and overestimates the flow size.
With n of 5 or 6, t of 2 or 3, and γ = 2t−1, the overestimation
for 98% of all such flows is less than 2%.

The above evaluation suggests that the distributed execution
of monitoring tasks can significantly help in effective utiliza-
tion of resources available in a network. In practice, a 7-bit
(or even a 6-bit) per-flow source-counter chunk is sufficient,
compared to the 32-bit counters used for exact computation of
flow sizes in a single element. Our assessment under various
settings of n, γ and t also shows that even in the case of
5-bit source-counter chunks, the distributed method correctly
computes flow sizes for 99.3% of the flows that contain at
least 25 packets. Besides, when algorithm 2 computes the size
of flow f imprecisely, the computed flow size almost always

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

lies in interval [|f | − X, 1.02 · |f |], where X is a number
of lost packets. Finally, the empirical evaluation confirms the
analytical advantages of our second model of network noise.

IX. RELATED WORK

Flow-size computation in a single switch. A long line of
research deals with efficient state representation for flow-size
computation in a single network element. To utilize SRAM
memory effectively, [23]–[25] propose hybrid SRAM/DRAM
counting architectures. These methods allocate in SRAM a
small counter only for frequent updates and maintain the entire
counter in slower but significantly bigger DRAM memory. In
contrast, our approach does not require a big pool of additional
cheaper memory and distributes the computation to leverage
resources available elsewhere in the network.

SAC [4], DISCO [3], and CEDAR [5] calculate an ap-
proximate number of per-flow packets by probabilistically
incrementing a counter, which allows reducing the number
of counter bits for long flows. In SAC, the counter is split
between the exponent and estimation parts. To increment a
counter, SAC probabilistically increments the estimation part,
and the increment probability depends on the exponent part.
When the estimation part overflows, SAC increments the ex-
ponent. In DISCO and CEDAR, the entire counter corresponds
to a counter value. CEDAR constructs variables as an array
that maps values of a counter variable to real counter values,
with the increment probability being inversely proportional to
the difference between two corresponding consecutive values
in this array. Among all possible arrays, CEDAR finds one
that minimizes the relative error.

Methods such as CounterBraids [26] and CounterTree [27]
store counters for all flows in hash-based data structures. The
idea of CounterBraids is based on sparse random graph codes.
The scheme maintains all variables in a tree-like architecture
where leaves correspond to less significant bits of the counter
variable, and internal nodes correspond to most significant bits.

Flow-size computation is frequently tackled by sketch-
based solutions. One of the first such solution is CounterMin
(CM) [6]. A CM sketch is a table with r rows and w columns,
where each row has a corresponding hash function mapping
a flow to a cell that stores a corresponding variable. For an
arriving packet, CM increments values of the corresponding
variables in all rows. To estimate a counter, CM takes the
minimum of the corresponding variables among all rows.
Pyramid Sketch [8] combines the ideas of the CounterTree
and CM sketches, reducing the number of bits in each cell
of the sketch table. UnivMon [9] exploits a sketch hierarchy
for different measurement tasks, such as heavy-hitter detection
or moment estimation. Elastic Sketch [10] separates mice and
elephant flows: mice flows are stored in a CM sketch, and
elephant flows are stored in a hash table. Elastic Sketch uses
the Ostracism principle to move counter variables between the
CM sketch and hash table.

Network-wide flow-size computation. Geared toward min-
imizing communication complexity, [28], [29] detect
network-wide heavy hitters in a model where switches report
their local counters to a coordinator. Their works can be

further improved by applying the q-MAX algorithm [30].
FlowRadar [31] maintains a small efficient hash-based data
structure in each switch to support storage of encoded flow
information, including counters, and a controller can leverage
its network-wide view on these data structures to decode the
flow information precisely.

Distributed flow state that changes routing. DIFANE [32]
and vCRIB [33] exploit switches in the network to enforce
endpoint ties. They both route traffic through intermediate
switches, deviating from the routing policy given by the users.

Distributed flow state that obeys routing. Distribution of
static policy state over the flow path is already considered
in [15]–[17]. These schemes are static and hence immune to
network noise.

Telemetry. Telemetry of packet loss is inherently dis-
tributed. While [11]–[14] measure packet loss per time in-
terval, we pursue a different approach of measuring loss
per packet group. The per-group granularity of our approach
has salient advantages. For example, because the number of
packets per group is fixed a priori, there is no need to com-
municate to the destination the number of packets that arrived
to the source during a fixed time interval as in the time-based
approach. Also, one can emulate the time-based approach by
periodically collecting the group-based measurements of our
algorithm at the destination.

Relation to CRDT. Conflict-free replicated data type
(CRDT) supports replicas in multiple network nodes without
coordination and concurrency on updates [34], resolving in-
consistencies by its mathematical properties. Since state-based
CRDT (CvRDT) functions that merge states from the replicas
must be commutative, associative, and idempotent, CvRDT is
stable to reordering of update operations. While the flow-size
counter in switches S and D can be viewed as an CvRDT
vector grow-only counter [34], our approach involves only
partial counters, and – unlike with CRDT – feasibility analysis
needs to incorporate network constraints.

X. CONCLUSION

This paper proposed RoDiC, a new distributed approach
for per-flow traffic monitoring under network noise. Instead
of making the monitoring less accurate to deal with resource
insufficiency at the designated network element, our approach
computes flow metrics exactly by involving extra network
elements that have spare resources. In providing robustness
against network noise, RoDiC employs an open-loop paradigm
that introduces no extra packets, communicates flow state in-
band by piggybacking few control bits on packets of the mon-
itored flows, and keeps latency low. The proposed technique is
general and relies on two main principles of packet grouping
and state overlap. First, we applied the RoDiC approach to
problem of computing the sizes of all flows. Then, we briefly
discussed how to instantiate RoDiC for real-time telemetry of
packet loss. We analytically established conditions guarantee-
ing correct operation of the designed RoDiC algorithms and
complemented the analysis with simulations driven by realistic
traffic traces. Our evaluation substantiated the potential of
RoDiC to effectively balance the monitoring load on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

network while keeping the computation and storage overhead
low.

REFERENCES

[1] V. Demianiuk, S. Gorinsky, S. I. Nikolenko, and K. Kogan, “Robust
Distributed Monitoring of Traffic Flows,” in ICNP, 2019, pp. 1–11.

[2] A. Cvetkovski, “An Algorithm for Approximate Counting Using Limited
Memory Resources,” in SIGMETRICS, 2007, pp. 181–190.

[3] C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, Y. Cheng, and H. Wu,
“Discount Counting for Fast Flow Statistics on Flow Size and Flow
Volume,” IEEE/ACM Trans. Netw., vol. 22, no. 3, pp. 970–981, Jun.
2014.

[4] R. Stanojevic, “Small Active Counters,” in INFOCOM, 2007, pp. 2153–
2161.

[5] E. Tsidon, I. Hanniel, and I. Keslassy, “Estimators Also Need Shared
Values to Grow Together.” in INFOCOM, 2012, pp. 1889–1897.

[6] G. Cormode and S. Muthukrishnan, “An Improved Data Stream Sum-
mary: The Count-Min Sketch and Its Applications,” J. Algorithms,
vol. 55, no. 1, pp. 58–75, Apr. 2005.

[7] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting: Focusing on the Elephants, Ignoring the Mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, Aug. 2003.

[8] Y. Tong, Z. Yang, J. Hao, C. Shigang, and L. Xiaoming, “Pyra-
mid Sketch: A Sketch Framework for Frequency Estimation of Data
Streams,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1442–1453, Aug.
2017.

[9] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in SIGCOMM, 2016, pp. 101–114.

[10] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-Wide
Measurements,” in SIGCOMM, 2018, pp. 561–575.

[11] G. Fioccola, A. Capello, M. Cociglio, L. Castaldelli, M. Chen, L. Zheng,
G. Mirsky, and T. Mizrahi, “Alternate-Marking Method for Passive and
Hybrid Performance Monitoring,” RFC 8321, January 2018.

[12] T. Mizrahi, C. Arad, G. Fioccola, M. Cociglio, M. Chen, L. Zheng,
and G. Mirsky, “Compact Alternate Marking Methods for Passive and
Hybrid Performance Monitoring,” IETF, October 2018.

[13] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. G. Chen, and
G. Mirsky, “AM-PM: Efficient Network Telemetry Using Alternate
Marking,” IEEE Network, vol. 33, no. 4, pp. 155–161, 2019.

[14] A. Riesenberg, Y. Kirzon, M. Bunin, E. Galili, G. Navon, and T. Mizrahi,
“Time-Multiplexed Parsing in Marking-Based Network Telemetry,” in
ACM SYSTOR, 2019, pp. 80–85.

[15] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”One Big
Switch” Abstraction in Software-Defined Networks,” in CoNEXT, 2013,
pp. 13–24.

[16] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing Tables in
Software-Defined Networks,” in INFOCOM, 2013, pp. 545–549.

[17] P. Chuprikov, K. Kogan, and S. Nikolenko, “How to Implement Complex
Policies on Existing Network Infrastructure,” in SOSR, 2018, pp. 9:1–
9:7.

[18] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in SIGCOMM, 2009, pp. 51–62.

[19] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pFabric: Minimal Near-Optimal Datacenter Transport,”
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435–446, 2013.

[20] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed Near-Optimal Datacenter Transport over
Commodity Network Fabric,” in CoNEXT, 2015, pp. 1:1–1:12.

[21] “YAPS: Yet Another Packet Simulator,”
http://wiki.github.com/NetSys/simulator/.

[22] “Robust Distributed Monitoring of Traffic Flows.”
https://github.com/chavit/RobustMonitoring.

[23] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a
Statistics Counter Architecture,” in HOTI, 2001, pp. 107–111.

[24] ——, “Maintaining Statistics Counters in Router Line Cards,” IEEE
Micro, vol. 22, no. 1, pp. 76–81, 2002.

[25] Q. Zhao, J. J. Xu, and Z. Liu, “Design of a Novel Statistics Counter
Architecture with Optimal Space and Time Efficiency,” in SIGMET-
RICS/Performance, 2006, pp. 323–334.

[26] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: A Novel Counter Architecture for Per-Flow Measure-
ment,” in SIGMETRICS, 2008, pp. 121–132.

[27] M. Chen, S. Chen, and Z. Cai, “Counter Tree: A Scalable Counter
Architecture for Per-Flow Traffic Measurement,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 1249–1262, April 2017.

[28] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-Wide Heavy
Hitter Detection with Commodity Switches,” in SOSR, 2018, pp. 8:1–
8:7.

[29] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz,
“Network-Wide Routing-Oblivious Heavy Hitters,” in ANCS, 2018, pp.
66–73.

[30] R. B. Basat, G. Einziger, J. Gong, J. Moraney, and D. Raz, “q-MAX:
A Unified Scheme for Improving Network Measurement Throughput,”
in IMC, 2019, pp. 322–336.

[31] Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in NSDI, 2016, pp. 311–324.

[32] M. Yu, J. Rexford, M. Freedman, and J. Wang, “Scalable Flow-Based
Networking with DIFANE,” in SIGCOMM, 2010, pp. 351–362.

[33] M. Moshref, M. Yu, A. B. Sharma, and R. Govindan, “vCRIB: Virtual-
ized Rule Management in the Cloud,” in HotCloud, 2012.

[34] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A Compre-
hensive Study of Convergent and Commutative Replicated Data Types,”
INRIA, Research Report RR-7506, 2011.

Vitalii Demianiuk is a postdoctoral fellow at Ariel
University (Israel). While pursuing his Ph.D. studies
at the Steklov Institute of Mathematics at St. Peters-
burg (Russia), he worked as a Research Assistant
in IMDEA Networks Institute (Spain) in 2017-2019.
He obtained his M.Sc. degree from ITMO University
in St. Petersburg (Russia) in 2016. His research
interests include packet classification, software de-
fined networks, network function virtualization, and
combinatorial optimization.

Sergey Gorinsky (Member, IEEE/ACM) is a
tenured Research Associate Professor at IMDEA
Networks Institute (Spain), where he leads the NetE-
con research group. Dr. Gorinsky received his Ph.D.
and M.S. degrees from the University of Texas at
Austin (USA) in 2003 and 1999 respectively and En-
gineer degree from Moscow Institute of Electronic
Technology (Russia) in 1994. From 2003 to 2009,
he served on the tenure-track faculty at Washington
University in St. Louis (USA). The areas of his
primary research interests are computer networking,

distributed systems, and network economics. He served as a TPC chair
of ICNP 2017 and other conferences, as well as a TPC member for a
much broader conference population including SIGCOMM, CoNEXT, and
INFOCOM. Sergey Gorinsky contributed to conference organization in many
roles, such as a general chair of SIGCOMM 2018.

Sergey Nikolenko is with the Steklov Institute of
Mathematics at St. Petersburg and National Research
University Higher School of Economics (St. Pe-
tersburg, Russia). He performs research in machine
learning (deep learning, Bayesian methods, natural
language processing, etc.), algorithm analysis (net-
working algorithms, competitive analysis, theoretical
computer science), and mathematics. He obtained
his Ph.D. degree from the Steklov Institute of Math-
ematics at St. Petersburg (Russia) in 2009 and his
M.Sc. degree from St. Petersburg State University

(Russia) in 2005.

Kirill Kogan is a Senior Lecturer at Ariel University
(Israel). He received his Ph.D. degree from Ben-
Gurion University (Israel) and worked as a Tech-
nical Leader at Cisco Systems (Israel) during 2000-
2012. His current research interests are in design,
analysis, and implementation of networked systems
broadly defined and, in particular, network proces-
sors, switching fabrics, packet classification, network
management, service architecture, and cloud com-
puting.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNET.2020.3034890

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

