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Abstract—The rapid rise of video streaming services
such as Netflix and YouTube has made video delivery
the largest driver of global Internet traffic including
mobile networks such as 5G or the upcoming 6G network.
To maintain playback quality, client devices employ
Adaptive Bitrate (ABR) algorithms that adjust video
quality based on metrics like available bandwidth and
buffer occupancy. However, these algorithms often
react slowly to sudden bandwidth fluctuations due
to limited visibility into network conditions, leading
to stall events that significantly degrade the user’s
Quality of Experience (QoE). In this work, we introduce
CaBR, a Congestion-aware adaptive BitRate decision
module designed to operate on top of existing ABR
algorithms. CaBR enhances video streaming perfor-
mance by leveraging real-time, in-kernel network teleme-
try collected via the extended Berkeley Packet Filter
(eBPF). By utilizing congestion metrics such as queue
lengths observed at network switches, CaBR refines
the bitrate selection of the underlying ABR algorithms
for upcoming segments, enabling faster adaptation to
changing network conditions. Our evaluation shows
that CaBR significantly reduces the playback stalls and
improves QoE by up to 25% compared to state-of-the-art
approaches in a congested environment.

I. Introduction
Live streaming has become a major driver of video traffic,

growing from under 1% to nearly 18% of all Internet traffic
between 2015 and 2022 [1], [2]. Platforms like YouTube
Live, Facebook Live, and Twitch highlight this demand.

HTTP Adaptive Streaming (HAS), including DASH [3]
and HLS [4], remains the dominant delivery method for
both VoD and live content due to its scalability and
infrastructure compatibility.

HAS splits video into short segments, each encoded at
multiple quality levels forming a bitrate ladder [5]. Clients
download a manifest and adaptively select segments via
an Adaptive Bitrate (ABR) algorithm (Figure 1). ABR
algorithms are typically classified by the metrics used
for selecting the next video segment [6]. Throughput-
based approaches, like the throughputRule defined in
the dash.js [7] player, estimate available bandwidth from
recent downloads and select the highest bitrate that
fits. While effective in stable networks, they often falter
under fluctuating conditions. BOLA (Buffer Occupancy-
based Lyapunov Algorithm) [8] combines buffer occupancy
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Fig. 1: Simplified video streaming pipeline.

and bandwidth estimates, optimizing bitrate decisions
via Lyapunov functions. It balances video quality and
rebuffering risk, enabling stable performance in dynamic
networks. LoL+ [9] targets low-latency streaming. It uses
k-means++ to initialize weights and self-organizing maps
(SOM) to dynamically adapt QoE metrics. By adjusting
the playback speed based on latency and buffer levels, it
ensures smooth playback with low rebuffering in real-time
scenarios.

Recent work has explored network-aware approaches
to improve video streaming. AutoPlex [10] enables inter-
session reuse of fine-tuned QUIC [11] and Bottleneck
Bandwidth and Round-trip propagation time (BBR) [12]
parameters for better QoE. Sultana et al. [13] leverage
application-layer logic, Programming Protocol-independent
Packet Processors (P4) [14], and network state for resource-
aware adaptation. However, neither approach utilizes the
extended Berkeley Packet Filter (eBPF) [15]. In contrast,
several studies apply eBPF to improve network awareness.
EyeQ [16] introduces a co-designed host-network system for
responsive congestion control. Sundberg et al. [17] develop
a kernel-level latency monitor for large-scale QoE inference.
Herbots et al. [18] use eBPF to correlate transport- and
application-layer metrics via TCP statistics. Qian et al. [19]
apply eBPF to boost volumetric streaming resilience by
duplicating packets across paths. Socker [20] enables socket-
level integration for real-time application adaptation.

Building on this, we introduce CaBR, Congestion-aware
adaptive BitRate, which enhances bitrate selection with
transport-layer congestion metrics. CaBR tags packets with
queue length at routers/switches via custom TCP headers,
exposing this telemetry to the client through HTTP
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(c) Throughput-based ABR

Fig. 2: Comparison the performance of BOLA, LoL+, and throughput-based ABR algorithms.

requests. This enables more responsive ABR decisions,
reduces rebuffering and quality fluctuations, and improves
QoE under dynamic network conditions.

II. Motivating Example

To evaluate how ABR algorithms react to real-time
congestion, we set up a controlled streaming session using
the seqeunce Big Buck Bunny [21], segmented into 1 s
chunks and encoded with AVC (libx264, ultrafast) following
the bitrate ladder in [22]. The client maintains a 6 s
playback buffer, which is typical for live streaming [23].
The video stream traverses three software switches (in
the user space of the server); Switch #2 is selectively
overloaded for 30 s intervals during a 4 min session to
simulate transient congestion. Full testbed details are
shown in Section IV. Figure 2 compares the performance of
BOLA, LoL+, and throughput-based ABRs. Green regions
show induced congestion; orange highlights playback stalls;
red dots represent the queue lengths of Switch #2. All
ABRs show delayed or inaccurate bitrate responses, failing
to prevent stalls. Throughput-based ABR performs worst,
often selecting high bitrates during congestion. BOLA
and LoL+ behave more conservatively but still make
poor decisions even in uncongested periods due to lack
of awareness of network-level information. This reflects
a core limitation: current ABRs rely solely on delayed
application-layer metrics and do not have access to lower-
layer congestion cues like queue length, especially due to
browser sandboxing. These findings motivate our approach:
using eBPF-based telemetry to expose real-time, kernel-
level congestion signals (e.g., queue length) to the ABR
alogrithm. This cross-layer insight enables more responsive
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Fig. 3: CaBR evaluation testbed.

bitrate adaptation, reducing stalls, and improving QoE
under dynamic network conditions.

III. Proposed Approach

In this section, we describe our Congestion-aware adap-
tive BitRate algorithm (CaBR), which runs on top of
underlying standalone ABR algorithms and refines their
selected segment qualities based on collected real-time
network telemetry. In Subsection III-A, we detail metric
collection and ABR access, and Subsection III-B covers
algorithmic use of telemetry data to improve quality.

A. Acquisition of Network-Level Metrics

To collect network-level metrics, we adopt the In-band
Network Telemetry (INT) [24] specification by introducing
three functional entities into the video streaming frame-
work: a Source, a Sink, and one or more Transit Hops. Our
design implements the Source functionality at the server
side using an eBPF program called Reserver that reserves
a 4 B custom option within the TCP header of downstream
packets.

Programmable network nodes located along the critical
path of downstream packets function as Transit Hops. Each
node parses the network telemetry-enabled packets and
appends local metrics, specifically queue length and packet-
switching delay, if it experiences a queue length above a
predetermined threshold.

B. CaBR

To determine whether access to real-time congestion
status influences QoE, we do not implement a standalone
ABR algorithm from scratch, but rather adapt the bitrate
selection of an underlying ABR algorithm according to
low-level transport metrics, such as queue length.

a) eBPF-based Network Feedback: Each client con-
tinuously receives netowrk-layer informations like queue
length via eBPF. The primary telemetry signal is the
instantaneous queue length Q ∈ [0, Qmax] observed at the
most congested router, where Qmax represents the router’s
maximum queue capacity (in packets of 1500 B). This signal
acts as an early indicator of network congestion and can
be used to refine bitrate decisions.
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(c) Throughput-based ABR
Fig. 4: Standard ABR algorithm (top) vs. ABR algorithm with CaBR (bottom).

b) Adaptation Logic: Let R = {r1, r2, . . . , rn} be the
bitrate ladder, defined as a set of discrete bitrates with
r1 < r2 < · · · < rn. To express gradual bitrate adjustments,
we introduce the notation:(

ri ↑
)

:= rmin(i+1,n),
(
ri ↓

)
:= rmax(i−1,1).

which defines the immediate higher (↑) and lower (↓) bi-
trates with respect to ri in the bitrate ladder R, respecting
the boundaries r1 and rn. CaBR adjusts the candidate
bitrate R̃ ∈ R selected by an underlying ABR algorithm
for the next segment based on current queue length Q. The
refinement relies on queue length thresholds X < Y < Z
in the range [0, Qmax] to categorize the congestion level
into safe, moderate, danger, and critical, defining the final
bitrate R̂ as:

R̂ =



(
R̃ ↑

)
, 0 ≤ Q < X (Safe)

R̃, X ≤ Q < Y (Moderate)(
R̃ ↓

)
, Y ≤ Q < Z (Danger)(

(R̃ ↓) ↓
)
, Z ≤ Q ≤ Qmax (Critical)

Step-wise adjustments ensure gradual bitrate transitions,
maintaining playback stability and avoiding bufferbloat.

IV. Performance Evaluation
We evaluate CaBR’s effectiveness in enhancing ABR al-

gorithms using eBPF-reported queue lengths. Experiments
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Fig. 5: Normalized QoE of baseline ABR algorithm vs.
baseline ABR with CaBR.

on Amazon EC2 [25] instances aim to assess (a) ABR
behavior under congestion without CaBR, and (b) QoE
improvements with CaBR integration.

Testbed Overview. Figure 3 shows our setup. (i)
HTTPServer stores and streams the first 270 s of Big
Buck Bunny in 1 s segments encoded via libx264 using a
standard bitrate ladder [22]. (ii) Switches bmv2, bmv2#1,
bmv2#2, and bmv2#3 are Behavioral Model version 2
(BMv2) switches programmed with P4 with queue length
Qmax = 64 packets, tail-drop policy, and 500 pps rate.
(iii) The client runs the dash.js [7] player with a 6 s
buffer and includes BOLA, LoL+, and Throughput-based
ABR, with or without CaBR. (iv) A congestion generator
exploits iPerf to induce periodic congestion via UDP cross-
traffic between bmv2#1 and bmv2#3. Finally, (v) sockops
programs monitor and log transport-level state via eBPF,
while CaBR receives real-time telemetry through a cross-
layer Go-based interface.

Scenarios. Each 100 s test runs one of the six ABR
configurations. Starting at 10 s, four 10 s congestion bursts
are introduced, each followed by a 10 s idle period. Each
scenario is repeated five times.

Results. Figures 4a–4c show the performance of BOLA,
LoL+, and Throughput-based ABRs with (bottom) and
without (top) CaBR. Each figure presents predicted
bandwidth (red), selected bitrate (blue), congestion pe-
riods (light green), playback stalls (dark green), queue
lengths (black circles), and CaBR-triggered decisions (black
crosses). In all cases, CaBR enables early congestion
detection and proactive bitrate adjustments, completely
preventing stalls. In contrast, baseline ABRs react too
late, often mid- or post-congestion, resulting in up to
six stalls. Figure 5 summarizes QoE using the ITU-T
P.1203 model with Mode 0 [26], [27], normalized to [0,
1] based on stall metrics, average bitrate, and quality
switches. CaBR consistently improves QoE across all ABRs
by up to 25%. BOLA, which relies on buffer occupancy,
responds more slowly to sudden congestion than LoL+
or throughput-based ABR. With CaBR, BOLA benefits
from real-time congestion signals, avoids rebuffering, and
achieves smoother playback.



V. Conclusion
This paper presents CaBR, a congestion-aware bitrate

regulation mechanism that operates on top of existing ABR
algorithms. CaBR leverages cross-layer, real-time network
telemetry, collected via eBPF, to rapidly detect congestion
and refine bitrate selection decisions. Experimental results
across three representative ABR algorithms – BOLA, LoL+,
and throughput-based ABRs – demonstrate that CaBR
provides a smooth playback with no stalls and improves
overall QoE by up to 25%, compared to the baselines
operating alone. Ongoing work examines a broader range
of video sequences, segment durations, network conditions,
and ABR strategies to further validate and generalize the
approach.
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