
The International Journal of Time-Critical Computing Systems, 17, 5–22 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Generalized Multiframe Tasks

SANJOY BARUAH
The University of Vermont

DEJI CHEN
The University of Texas at Austin

SERGEY GORINSKY
New Jersey Institute of Technology

ALOYSIUS MOK
The University of Texas at Austin

Abstract. A new model for sporadic task systems is introduced. This model—the generalized multiframe task
model—further generalizes both the conventional sporadic-tasks model, and the more recent multiframe model
of Mok and Chen. A framework for determining feasibility for a wide variety of task systems is established; this
framework is applied to this task model to obtain a feasibility-testing algorithm that runs in time pseudo-polynomial
in the size of the input for all systems of such tasks whosedensitiesare bounded by a constant less than one.

Keywords: recurring multiframe tasks, preemptive uniprocessor scheduling, hard deadlines, feasibility analysis

1. Introduction

Multiframe taskswere introduced by Mok and Chen (1996), as a generalization to the well-
known periodic task model of Liu and Layland (1973). A multiframe task is represented
by a tuple(EE, P), where EE = [Eo, E1, . . . , EN−1] is a vector ofexecution times, and P
is theminimum separation time. The task generates an infinite succession offrames; the
ready times of consecutive frames are at leastP time units apart, the execution requirement
of thei ’th frame (i ≥ 0) is Ei modN , and the deadline of each frame isP time units after its
ready time. Feasibility conditions were presented by Mok and Chen for the uniprocessor
static-priority scheduling of systems of such multiframe tasks.

In this paper, we study a natural generalization of the multiframe task model. In our
model—thegeneralized multiframe (gmf) task model—the multiframe model of Mok
and Chen is further generalized in that (i) the deadlines of frames are allowed to differ from
the minimum separation; further, all the frames need not have the same deadlines, and (ii) all
the minimum separations need not be identical. Formally, a gmf taskT is characterized by
the 3-tuple(EE, ED, EP), where EE, ED and EP areN-ary vectors [E0, E1, . . . , EN−1] of execu-
tion requirements, [D0, D1, . . . , DN−1] of (relative) deadlines, and [P0, P1, . . . , PN−1] of
minimum separations respectively. The interpretation is as follows: Thei ’th frame of task
T has an arrival timeai , a deadlineai + di , and an execution requirement ofei , where

• a0 ≥ 0, andai+1 ≥ ai + Pi modN ,

6 BARUAH, CHEN, GORINSKY AND MOK

Figure 1. Example.

• di = Di modN , and

• ei = Ei modN .

Example 1. T= ([1,2,5,1], [2,2,8,5], [3,2,3,4]) is a gmf task withN = 4. Figure 1
depicts a legal sequence of frame arrivals, and the corresponding deadlines, forT (Ri
denotes thei ’th frame, and the number aboveRi denotes the execution requirement ofRi).
Observe that, asR3 andR4 demonstrate, it isnot necessary that thei ’th frame’s deadline
precede the arrival time of the(i +1)’th frame. (We point out that in this sequence of frame
arrivals, each frame arrives at the earliest instant that it is legal for it to do so. We will revisit
this scenario in Section 3.1.)

This Research

Our focus in this paper is on determining uniprocessor feasibility conditions for systems
of gmf tasks. That is, given a system of gmf tasks, how do we determine if they can
always (i.e., for any legal set of frame arrival times) be scheduled to meet all deadlines
on a single processor by an optimal uniprocessor scheduling algorithm such as Earliest
Deadline First (EDF) (Dertouzos, 1974) or Least Slack (Mok, 1983)? In order to answer
this question, we abstract away from gmf tasks in Section 2, and study a (very general)
category of task systems satisfying what we call thetask independence assumptions. For
such systems, we provide a general methodology, based upon the concept ofdemand bound
functions, for determining feasibility. We apply this methodology to systems of gmf tasks
in Section 3, to obtain an algorithm for feasibility determination for such systems. Perhaps
somewhat surprisingly, it turns out that this problem is no more difficult, from a run-time
complexity point of view, than determining feasibility in sporadic task systems (Baruah,
Mok, and Rosier, 1990; Baruah, 1993). As a corollary to our main results, we also obtain
an algorithm for determining feasibility for the multiframe model of Mok and Chen, that
complements the static-priority feasibility algorithm in Mok and Chen (1996).

Significance of this Research

The gmf task model is, in our opinion, the logical “next step” in the succession of models
that have been developed to represent recurring tasks with minimum separation constraints.
As was pointed out by Mok and Chen (1996), the simplest model—each task characterized

GENERALIZED MULTIFRAME TASKS 7

by an execution requiremente and a minimum separationp (deadlines are “implicit,” i.e.,
they are assumed to occurp units after the frame’s arrival)—is a straightforward extension
of the periodic task model of Liu and Layland (1973). Mok’s generalization (Mok, 1983)
explicitly added the deadlined, with the interpretation that the deadline of a frame occurs
d time units after its arrival. The multiframe model of Mok and Chen (1996) permitted
each task to cycle through a given finite sequence of frame execution times, but maintained
the requirements that (i) each frame’s deadline occurs exactlyp units after its arrival, and
(ii) successive frames arrive at leastp time units apart. The gmf-task model allows for
the specification of arbitrary deadlines for each frame and, for good measure, permits the
minimum separations, too, to cycle through a given finite sequence of values.

At first glance, the gmf model may appear to be easily analyzed for feasibility by trans-
forming each gmf task into a set of regular sporadic tasks (in the sense of Mok (1983))
with “offsets.” Thus for example, a gmf task([1,2], [2,2], [10,10]) would be considered
equivalent, for feasibility-analysis purposes, to two sporadic tasksT1 andT2 such that both
have deadline 2 and minimum-separation 20,T1 has execution requirement 1, andT2 has
execution requirement 2 and is “offset” fromT1 by 10 units (in the sense that the first frame
of T1 arrives at 0 and successive frames arrive exactly 20 units apart, while the first frame
of T2 arrives at 10 and successive frames arrive exactly 20 units apart). However, such an
approach to feasibility-analysis is incorrect. (To see why, consider a gmf system consisting
of two tasks–the one above, and the task([1], [2], [20]). Using the same reduction, this
second gmf task would transform to a sporadic task with execution requirement 1, that first
arrives at 0 and has successive arrivals exactly 20 units apart. The system would therefore
be considered feasible. However, it is actually infeasible—consider the situation when the
first frame of the second task arrives at the same instant as the second frame of the first
task.) The problem lies in the fact that such a transformation fails to correctly identify the
“worst-case” combination of frame arrivals: indeed, as we will see in the following sec-
tions, identifying such worst-case combinations of events is quite non-trivial, and a general
methodology for doing so is one of the main new ideas developed here.

Ideas very similar to the demand bound function have been previously used in feasibility-
analysis of hard-real-time systems (see, e.g., (Baruah, Mok, and Rosier, 1990; Jeffay, Stanat,
and Martel, 1991; Jeffay and Stone, 1993). Loosely speaking, the approach has consisted
of identifying a critical instant (Buttazzo, 1997, p. 79)—a “worst-case” scenario—and
ensuring that certainprocessor demand criteria(Buttazzo, 1997, p. 102) are met during
this worst-case scenario. Unfortunately, such an approach is not applicable for feasibility-
analysis of gmf tasks, in the sense that it is not in general possible to identify a unique worst-
case scenario for a given system of gmf tasks. One of the research contributions of this paper
lies in extending feasibility-analysis techniques to new task models such as the gmf model,
on which the critical instant/processor demand criteria approach is not directly applicable.

2. General Framework

In this section, we consider a very abstract model of task systems. We study the feasibility
problem for this abstract model, and provide a framework for determining feasibility for
task systems in this model. This abstract model is defined as follows.

8 BARUAH, CHEN, GORINSKY AND MOK

A task is defined to be an entity that generates a (possibly infinite) sequence ofjobsor
frames. Each job is characterized by anarrival time, adeadline, and a (worst-case)execution
requirement. Each task is characterized by aworkload constraint, which determines the
exact nature of the sequence of jobs that a task may generate. A set of jobs generated by
a task is calledlegal if it satisfies the workload constraint associated with the task. Atask
systemconsists of several tasks which share a resource. This research is restricted to the
study of task systems having only one copy of the resource. This resource is assumed to be
completely preemptable.

Task Independence Assumptions

We make the following assumptions regarding the various tasks in a task system:

1. The runtime behavior of a task does not depend upon the behavior of other tasks in the
system.That is, each task is an independent entity, perhaps driven by separate external
events. It is not permissible for one task to generate a job directly in response to another
task generating a job. Instances of task systemsnot satisfying this assumption include
systems where, for example, all tasks are required to generate jobs at the same time
instant, or where it is guaranteed that certain tasks will generate jobs before certain other
tasks. (However, such systems can sometimes nevertheless be represented in such a
manner as to satisfy this assumption, by modelling the interacting tasks as a single task
which is assumed to generate the jobs actually generated by the interacting tasks.)

2. The workload constraints can be specified without making any references to “absolute”
time. That is, specifications such as “TaskT generates a job at time-instant 3” are
forbidden.

There are several scenarios within which this assumption holds. Consider first a dis-
tributed system in which each task executes on a separate node (jobs correspond to
requests for time on a shared resource) and which begins execution in response to an
external event. All temporal specifications are made relative to the time at which the
task begins execution, which is nota priori known.

As another example, consider a distributed system in which each task (i.e., the associated
process) maintains its own (very accurate) clock, and in which the clocks of different
tasks are not synchronized with each other. The accuracy of the clocks permit us to
assume that there is no clock drift, and that all tasks use exactly the same units for
measuring time. However, the fact that these clocks are not synchronized rules out the
use of a concept of an absolute time scale.

(We observe that periodic task systems—where periodic taskT is specified by the
parametersstart-time s, computation requirement c, andperiod p, with the intepretation
thatT must be scheduled forc units of time over interval [s+ kp, s+ kp+ p) for all
integerp—violate the task independence assumption since the start-times are defined in
terms of an absolute time scale. However, sporadic task systems (Mok, 1983; Baruah,
Mok, and Rosier, 1990; Baruah, 1993), specified in terms of computation requirements,

GENERALIZED MULTIFRAME TASKS 9

relative deadlines, and minimum separations, satisfy this assumption, as do systems of
gmf-tasks.)

These assumptions concern the process by which jobs (frames) are generated by the tasks
in the system; once generated, the jobs (each characterized by an arrival time, an execution
requirement, and a deadline) are independent of each other. That is, while the task inde-
pendence assumptions restrict the job-generation process, they make no assertions about
the interactions of the jobs once they have been generated. (Thus for instance, a restriction
that jobs generated by a particular task must complete execution in FCFS order wouldnot
fall within the scope of these assumptions.)

In terms of legal sets of jobs, the first task independence assumption implies that a set
of jobs generated by an entire task system is legal in the context of the task system if
and only if the jobs generated by each task are legal with respect to the constraint as-
sociated with that task. Letting an ordered 3-tuple(a,e,d) represent the job generated
by some taskT with arrival timea, execution requiremente, and deadlined, the second
task independence assumption implies that if{(ao,eo,do), (a1,e1,d1), (a2,e2,d2) . . .} is
a legal arrival set with respect to the workload constraint for taskT , then so is the set
{(ao − x,eo,do − x), (a1 − x,e1,d1 − x), (a2 − x,e2,d2 − x) . . .}, wherex may be any
real number.

The task independence assumptions are extremely general and are satisfied by a wide
variety of the kinds of task systems one may encounter in practice. As described above,
sporadic task systems satisfy these assumptions, as do “worst-case” periodic task systems
(Liu and Layland, 1973) (which are periodic task systems where each task may choose any
start-time—it is proved (Liu and Layland, 1973) that the worst-case occurs when all tasks
have the same start time), even if each periodic task may specify adeadlinein addition to
computation requirment and period, and systems of multiframe tasks (Mok and Chen, 1996).
So do more sophisticated systems, such as, for example a teleconferencing application: “A
process generates successive multi-packet video-message at leastp1 time units apart, and
each video-message is followed by a multi-packet audio-message withinp2 time units
(p2 < p1/3),” or the system described below in Example 2.

Example 2. Consider a systemτ of two tasksT1 andT2 that share a resource (Figure 2).
TaskT1 may begin execution at any time, and generates 3 jobs—J11 arrives at the shared
resource immediately whenT1 begins execution,J12 arrives between 1 and 10 time units
after T1 begins execution, andJ13 arrives exactly 6 time units afterT1 begins execution.
TaskT2, too, may begin execution at any time, and generates 2 jobs withJ21 arriving no
earlier than 3 time units afterT2 begins execution, andJ22 arriving between 2 and 8 time
units afterJ21. We will formally prove later in this section that this task system is in fact
infeasible.

It is noteworthy that determining feasibility for many interesting tasks systems not sat-
isfying the task independence assumptions (such as periodic task systems with deadlines
not equal to period) turns out to be computationally difficult (often NP-hard), and hence of
limited interest from the perspective of efficient determination of feasibility.

10 BARUAH, CHEN, GORINSKY AND MOK

Figure 2. Example tasks.

Definition: Demand Bound Function.Let T be a task, andt a positive real number. The
demand bound functiondbf(T, t) denotes the maximum cumulative execution requirement
by jobs ofT that have both arrival times and deadlines within any time interval of durationt .

Example 3. Consider again the example task system from Example 2. We plot the demand
bound functions for tasksT1 andT2 below, for the duration 0≤ t ≤ 10:

-

6

t
2 4 6 8 10

dbf(T1, t)
2

4

6

-

6

t
2 4 6 8 10

dbf(T2, t)
2

4

6

These functions have been determined by careful examination of the structures of the tasks;
we illustrate the process by means of a few examples. In general, for anyTi and anyt ,
computingdbf(Ti , t)may require exhaustive-search to determine the maximum cumulative
execution requirement by jobs ofTi with both arrival-times and deadlines within an interval
of lengtht . Let t1 denote the time at which taskT1 begins execution:

dbf(T1,3) = 3: If J12 and J13 both arrive at timet1 + 6, then they both have their arrival
times and deadlines in the interval [t1+ 6, t1+ 9).

dbf(T1,9) = 4: If J12 arrives betweent1 + 1 andt1 + 7, thenJ11, J12 and J13 all have
arrival times and deadlines in the interval [t1, t1+ 9).

GENERALIZED MULTIFRAME TASKS 11

Let t2 denote the time at which taskT2 begins execution, and lett ′ denote the arrival time
of J21 (t ′ ≥ t2+ 3):

dbf(T2,4) = 2: This corresponds to the interval betweenJ21’s arrival time and deadline.

dbf(T2,7) = 3: This corresponds to the interval betweenJ22’s arrival time and deadline.

dbf(T2,9) = 5: SupposeJ22 arrives at the earliest possible time—i.e., att ′ +2. Then both
J21 andJ22 have their arrival times and deadlines in the interval [t ′, t ′ + 9).

Theorem 1 Task systemτ is infeasible if and only if
∑

T∈τ dbf(T, t) > t for some positive
real number t.

Proof: We prove the implicaton in one direction here, and outline how the other direction
may be proved. The proof is similar to ones that appear in Baruah, Mok, and Rosier (1990),
Baruah (1993), the interested reader is referred there for further details.

If: Suppose that
∑

T∈τ dbf(T, to) > to. Consider any time interval [ts, ts + to).

For eachT ∈ τ , letw(T)
def= dbf(T, to). By the definition of demand bound functions,

there is an interval of durationto during whichT can generate jobs with a total execution
requirement equal tow(T), such that both their arrival times and deadlines lie within the
interval. As a consequence of the task independence assumption, it follows thatT can
generate a similar set of jobs with arrival time and deadlines within the interval [ts, ts+ to),
such that the total execution requirement of these jobs is alsow(T). Let R(T) denote this
set of jobs. It is straightforward to see that no scheduling algorithm can schedule the set of
jobs

⋃
T∈τ R(T), since each job has arrival time and deadline within the interval [ts, ts+ to),

and the total execution requirement of all the jobs exceeds the length of the interval.

Only if: Let τ be an infeasible task system. There are sets of jobs ofτ for which EDF
will fail to meet all deadlines—call such sets of jobsinfeasible setsof τ . Define aminimal
infeasible setof τ to be an infeasible set ofτ such that no proper subset of it is an infeasible
set ofτ . Let So be such a minimal infeasible subset ofτ . Let ts denote the arrival time
of the earliest-arriving job inSo, and lett f denote the latest deadline inSo. Consider the
EDF-schedule ofSo. It must be the case that

• This EDF-schedule misses a deadline at tf . SinceSo is infeasible, some deadline must
be missed. If the deadline is missed att1 < t f , then the set of jobs inSo with deadlines
≤ t1 would be infeasible, contradicting our assumption thatSo is a minimal infeasible
set ofτ .

• This EDF-schedule never idles the processor over the interval[ts, t f]. For a proof by
contradication, assume that the processor was idled at some timet2 > ts. Then the set
of jobs inSo with arrival-times≥ t2 would be infeasible, contradicting our assumption
thatSo is a minimal infeasible set ofτ .

The cumulative execution requirements of the jobs inSo therefore exceedst f − ts; by
definition of dbf, this implies that

∑
T∈τ dbf(T, t f − ts) > t f − ts, and the theorem is

proved.

12 BARUAH, CHEN, GORINSKY AND MOK

The statement of Theorem 1 immediately suggests a procedure for checking whether a
systemτ of tasks is feasible:

1. Determine the demand bound function for every taskT in τ .

2. Determine if there exists at ∈ R such that(∑
T∈τ

dbf(T, t)

)
> t

Example 4. To verify whether task systemτ from Example 2 is feasible, it suffices
to computedbf(T1, t) + dbf(T2, t) at all pointst such thatdbf(T1, t−) < dbf(T1, t) or
dbf(T2, t−) < dbf(T2, t):

t 2 3 4 7 9
dbf(T1, t)+ dbf(T2, t) 1+ 0= 1 3+ 0= 3 3+ 2= 5 3+ 3= 6 4+ 5= 9

Sincedbf(T1,4) + dbf(T2,4) > 4, we conclude thatτ is infeasible. An example of an
unschedulable scenario is the following: Consider an interval [ts, ts + 4). Suppose that
T1 begins execution atts − 6, and jobsJ11, J12, and J13 arrive at timests − 6, ts, and ts
respectively. Suppose further thatT2 begins execution atts − 3, and has jobJ21 arrive at
time ts . Then jobsJ12, J13 andJ22 , with a total execution requirement of 5, all arrive and
have deadlines within the interval [ts, ts + 4), and are therefore unschedulable:

-

6

6

?
6

?

6

?

T1

J11

J12

J13

−6 −4 −2 ts +2 +4 +6 +8

-

6

6

?

T2

J21

−6 −4 −2 ts +2 +4 +6 +8

Comment. Since the demand bound function for each taskT has an infinite domain (the
real numbers), it is not possible to explicitly compute the demand bound functions in (1)
above. Instead, an attempt must be made to implicitly determinedbf(T, t) for givenT and
t , as and when required. In order to be able to do so, we must know more about the exact
nature of the tasks, and the manner in which they generate jobs.

GENERALIZED MULTIFRAME TASKS 13

3. Feasibility Determination in gmf Task Systems

We now return to the problem of determining feasibility for a system of gmf tasks. Ob-
serve that gmf task systems satisfy the task independence assumptions of Section 2; hence
the feasibility-determination methodology described above—determine the demand-bound
functiondbf(T, t) for every taskT and every time-instantt , and then determine if there is
a t such that(

∑
T∈τ dbf(T, t)) > t—is applicable.

The l-MAD Property

A gmf-task T satisfying thelocalized Monotonic Absolute Deadlines (l-MAD)property
satisfies the additional constraint that itsi ’th frame has a deadline no later than that of its
(i + 1)’th frame; i.e., thatDi ≤ Pi + D(i+1)modN for all i . (Observe that the example task
system depicted in Figure 1 satisfies thel -MAD property.)

The l -MAD property accurately captures the characteristics of a wide variety of real-
time applications. Consider, for example, an application in which a remote multipurpose
sensor samples several different kinds of signals in a round-robin fashion, with each kind
characterized by a size (e.g., number of packets) and a latency requirement, that need to
be transported over a packet-based circuit-switched network to a processing center. The
sensor can be represented as a taskT = (EE, ED, EP), with N—the dimension of the vectors—
equal to the number of different kinds of data sampled,Ei and Di representing the size
and the latency requirement of thei ’th kind of data, andPi representing the time lapse
between the instants a sample from thei ’th and(i + 1)modN’th kind of data is obtained.
With the network modelled as the shared resource, and thel -MAD property reflecting the
fact that data from the sensor is sent into the network in a first-in first-out fashion, this
model very accurately represents the traffic generated by the sensor and injected into the
network. Several other applications (including the ones described in Mok and Chen (1996))
particularly from the domain of real-time networking, are naturally described as gmf tasks
satisfying thel -MAD property.

Our goal in this section is to design an efficient feasibility-analysis test for systems of
gmf-tasks, with or without thel -MAD property. For ease of exposition, we first focus
on systems satisfying thel -MAD property—in Sections 3.1 and 3.2 below, we present a
feasibility test for a system of gmf-tasks all of which satisfy thel -MAD property. Later
(Section 3.3) we outline how to extend this feasibility test to handle systems of tasks that
may not bel -MAD—it will be seen here that all the major ideas are exactly those used in
thel -MAD case.

3.1. Determining the Demand Bound Functions

Recall that a gmf taskT is characterized by the 3-tuple(EE, ED, EP), where EE, ED and EP
areN-ary vectors [E0, E1, . . . , EN−1], [D0, D1, . . . , DN−1], and [P0, P1, . . . , PN−1], with
Di ≤ Pi + D(i+1)modN for all i .

14 BARUAH, CHEN, GORINSKY AND MOK

By definition,dbf(T, t) is a measure of the workload that can be generated by taskT over
a time interval of lengtht . For any interval [to, to + t], only those jobs with arrival-times
at or afterto anddeadlines at or beforeto+ t would contribute to this workload; hence the
worst-case workload, as quantified bydbf(T, t), occurs (for each value oft) when taskT
generates a job at some time instantto, and then generates subsequent jobs at the earliest
possible times in order to have as many jobs as possible with deadlines at or beforeto + t .
Unfortunately, it is not immediately obvious what this first job is, and indeed the choice of
the first job for the interval which determinesdbf(T, t) depends upon the choice oft , and
is different for differentt . (For example, in Figure 1dbf(T,2) is defined by jobR1 while
dbf(T,5) is defined by the jobR0 followed as soon as legally possible by the jobR1.)

Consider the set of jobsρ(T) = {Ro, R1, R2, . . .} such that (lettinga(Ri), e(Ri) and
d(Ri) denote the arrival time, execution requirement, and deadline respectively of jobRi):

• a(Ro) = 0 anda(Ri+1) = a(Ri)+ Pi modN ,

• d(Ri) = a(Ri)+ Di modN , and

• e(Ri) = Ei modN .

That is, Ro, R1, R2, . . . denote the jobs that are generated byT if T generates its first
job—Ro—at time 0, and generates each subsequent job at the earliest possible time. (Fig-
ure 1 denotes the first few jobs inρ(T) for the example multiframe taskT considered in
Example 1.)

The crucial observation is that, if jobRi is to be the first job of an interval that determines
dbf(T, t) for somet , then the jobs which contribute to this worst-case workload are exactly
those jobs in the ordered sequence [Ri , Ri+1, Ri+2, . . . ,] which have deadlines≤ a(Ri)+t .
One could therefore in principle identify all candidate intervals that determine the value
of the demand-bound function for different values oft by simply enumerating, for each
pair of positive integersi, j, the cumulative execution requirement and interval-size if job
Ri were to be the first job of adbf-determining interval and jobRi+ j were to be the last
job in the interval. The demand bound function can be determined from this enumerated
list: for eacht , dbf(T, t) is equal to the largest execution requirement from among all the
enumerated pairs which have interval-size no greater thant . Of course, such a procedure
will never terminate, since the variablesi and j grow without bound. (Observe, however,
that we only need considerRi ∈ {Ro, R1, R2, . . . , RN−1}; this is because every sequence of
jobs [RN+i , RN+i+1, . . . , RN+i+ j] generates exactly the same ordered pair as the sequence
[Ri , Ri+1, . . . , Ri+ j].)

Figure 3 presents a procedure that constructs a list of execution-requirments generated
by every possible sequenceof at most N jobs, and the size of the interval within which this
execution requirement must be met. Algorithmbuild-list runs in timeO(N2 log N) and
produces a list sorted by interval size such that, for a givent , dbf(T, t) can be determined
from this list in O(log N) time, using binary search (provided, of course, thatt is small
enough to be present in this list).

Example 5. Consider once again the gmf taskT of Example 1. Algorithmbuild-list
generates one ordered pair for each combination ofi and j , as i and j each range over

GENERALIZED MULTIFRAME TASKS 15

Figure 3. Constructing a lookup list ofdbf(T, t) for smallt .

0,1,2, and 3:

j = 0 j = 1 j = 2 j = 3
i = 0 (1,2) (3,5) (8,13) (9,13)
i = 1 (2,2) (7,10) (8,10) (9,11)
i = 2 (5,8) (6,8) (7,9) (9,12)
i = 3 (1,5) (2,6) (4,9) (9,17)

After sorting, the list looks as follows:〈(2,2), (1,2), (3,5), (1,5), (2,6), (6,8), (5,8),
(7,9), (4,9), (8,10), (7,10), (9,11), (9,12), (9,13), (8,13), (9,17)〉.

Upon deleting redundant pairs, the remaining ordered pairs are:

〈(2,2,)(3,5), (6,8), (7,9), (8,10), (9,11)〉

Consider now an interval [ts, t f] encompassingmorethanN jobs. LetRs be the first, and
Rf the last, job contained entirely within this interval:

s
def= min i 3 a(Ri) ≥ ts; f

def= maxi 3 d(Ri) ≤ ts.

Observe that the total execution requirement of all the tasks inρ(T) over the interval [ts, t f]
is
∑

s≤i≤ f e(Ri).
Suppose that there areq N+ r jobs inρ(T) in the interval [ts, t f], wherer < N. That is,

r andq are defined thus:

r
def= (f − s+ 1)modN; q

def= (f − s+ 1− r)/N.

16 BARUAH, CHEN, GORINSKY AND MOK

Figure 4. Algorithm compute-dbf.

Theseq N + r jobs inρ(T) that contribute to the workload over [ts, t f] can be grouped
in the following manner:

Rs Rs+1 · · · · · · · · · Rs+N−1

RN+s RN+s+1 · · · · · · · · · Rs+2N−1

· · · · · · · · · · · · · · · · · ·
R(q−1)N+s R(q−1)N+s+1 · · · · · · · · · Rs+q N−1

Rq N+s Rq N+s+1 · · · Rf

The jobs in each row in the above grouping together have a total execution requirement of

E
def= ∑N−1

i=o Ei ; the total execution requirement of all the tasks together is therefore

q E+
∑

s+q N≤i≤ f

e(Ri). (1)

Sincea(Rs+q N) = ts + q P, it follows that the total execution requirement over [ts, t f]
is equal toq E plus the total execution requirement over [ts + q P, t f]; furthermore, since
the interval [ts + q P, t f] containsr < N jobs, the cumulative execution-requirement
over this interval can be obtained from the list generated by Procedurebuild-list.
Algorithm compute-dbf (Figure 4) is based upon this observation.Dmin denotes the small-
est relative deadline. The function-callget-from-list(t) uses the sorted list constructed by
Algorithm build-list to returndbf(T, t)—as discussed above, this can be accomplished in
O(log N) time.

Example 6.Consider once again the taskT from Example 1, upon which we had simulated
the behavior of Algorithmbuild-list in Example . Suppose now that we wish to determine
dbf(T,15) by Algorithm compute-dbf. Noting that P = 12, Dmin = 2, andE = 9,

GENERALIZED MULTIFRAME TASKS 17

we have

dbf(T,15)=
(⌊

15− 2

12

⌋
· 9+ get− from− list(2+ (13 mod 12))

)
=9+ 2=11.

dbf(T,100)=
(⌊

100− 2

12

⌋
· 9+get− from− list(2+(98 mod 12))

)
=72+2=74.

dbf(T,11)=
(⌊

11− 2

12

⌋
· 9+ get− from− list(2+ (9 mod 12))

)
=0+ 9=9.

3.2. Feasibility Determination

In Section 3.1 we have seen how Algorithmbuild-list preprocesses a given gmf taskT in
O(N2 log N) time (whereN is the dimension of the vectors representingT) to generate
data-structures that allowdbf(T, t) to be computed inO(log N) time for anyt .

Let T = (EE, ED, EP) be any gmf task;EE = [Eo, . . . , EN−1]; ED = [Do, . . . , DN−1]; and
EP = [Po, . . . , PN−1]. We now define a reduction fromT to a setγ (T) of “regular” sporadic
tasks with deadlines in the sense of Mok (1983) (recall that such tasks are represented by a 3-
tuple(e,d, p), wheree represents the execution requirement of each frame (job) generated
by the task,d the time interval between the arrival-time and the deadline of each frame, and
p the minimum time interval between the arrival instants of successive frames).

Let 〈(w1, t1), (w2, t2), . . . , (wm, tm)〉 denote the sorted list of(workload, interval-size)
ordered pairs generated by Algorithmbuild-list on taskT . (Observe thatwi < wi+1, and
ti < ti+1, for all i , 1 ≤ i < m; and thatwm ≡ E, whereE is as defined in Figure 4.) We
define the setγ (T) as follows:

γ (T)
def= { (wo, to, P), (w1− wo, t1, P), (w2− w1, t2, P), . . . ,

. . . , (wm−1− wm−2, tm−1, P), (wm − wm−1, tm, P) } (2)

whereP
def= Po + P1+ P2+ · · · + PN−1.

Example 7. In Example , we had traced the behavior of Algorithmbuild-list on the task
T of Example 1. Using the sorted list of ordered pairs generated by Algorithmbuild-list,
γ (T) is seen to equal

{(2,2,12), (1,5,12), (3,8,12), (1,9,12), (1,10,12), (1,11,12)}.

It is not hard to see that the workload generated byγ (T)when each task inγ (T) generates
its first job at time 0, and each subsequent job as soon as legal (i.e., exactly at timesk · P,
for all k ∈ N) is exactly the same as that generated byρ(T):

18 BARUAH, CHEN, GORINSKY AND MOK

Procedurefeasibility(τ)

• Call Algorithmbuild-list on eachTi ∈ τ .

• Construct a priority queueQ of 3-tuples(time, task-id, demand), with the 3-tuple with
the smallest value of time having greatest priority.

• For each taskTi , let ti be the smallestt such thatdbf(Ti , t) > 0—ti is easily determined
from the list constructed by Algorithmbuild-list. Insert(ti , Ti ,dbf(Ti , ti)) into Q

•
S← 0
repeat{
(to, To,d)← deletemin(Q)
S← S+ d; if (S> to) return“infeasible”
determine the smallestt ′ > to such thatdbf(To, t ′) > dbf(To, to)
insert(t ′, To,dbf(To, t ′)− dbf(To, to)) into Q
}

Figure 5. Feasibility determination for a system of gmf tasks.

Lemma 1 For all gmf tasks T and all time intervals t

dbf(T, t) =
∑

T ′∈γ (T)
dbf(T ′, t).

Theorem 2 follows.

Theorem 2 A system of gmf tasksτ is feasible on a single processor if and only if the
system of sporadic tasks⋃

T∈τ
γ (T)

is feasible on a single processor (here the “union” operator–
⋃

–defines a “multiset” union;
i.e., duplicate tasks are not removed from the resulting system).

Thus, we have reduced the problem of determining feasibility of a set of gmf tasks to
the problem of determining feasibility of a set of “regular” sporadic tasks. This reduction
consists of calls to Algorithmbuild-list, followed by a simple multiset union operation, and
is easily seen to takeO(n2 logn) time, wheren is the length of the representation of the
gmf task system.

The problem of determining feasibility of a system of sporadic tasks has been previously
studied (Baruah, Mok, and Rosier, 1990; Baruah, 1993). The major result is that the
sporadic task system{(e1,d1, p1), . . . , (en,dn, pn)} can be tested for feasibility in time

O(logn · ρ

1−ρ ·max1≤i≤n{pi − di }), whereρ
def= ∑n

i=1
ei
pi

. As a consequence, we conclude

GENERALIZED MULTIFRAME TASKS 19

that a gmf task systemτ consisting ofn gmf tasks be tested for feasibility in time

O

(
logn · ρ

1− ρ ·max
T∈τ
{(Po + P1+ · · · + PN−1)− Do}

)
,

whereρ
def= ∑

T∈τ (Eo + E1 + · · · + EN−1)/(Po + P1 + · · · + PN−1) is thedensityof the
task system. No feasible task system can have a density greater than one; for task systems
with densitya priori bounded from above by some constantc < 1, Theorem 2 suggests a
pseudopolynomial-time algorithm for determining feasibility for a system of gmf tasks.

3.3. GMF-Task Systems Without thel-MAD Property

In the preceding, we have assumed that the gmf-task system satisfied thel -MAD property—
that each taskT satisfiedDi ≤ Pi + D(i+1)modN for all i . We had argued that such task
systems are likely to be the ones that arise most frequently in practice, and had hence devel-
oped an efficient feasibility test for these systems. For the sake of completeness, we briefly
outline how the preceding results may be extended to handle systems of tasks that donot
satisfy thel -MAD property.

For each gmf taskT , Algorithmbuild-list will once again build a table containingdbf(T, t)
for small enought , and an analog of Equation 1 will form the basis of using this table to
computedbf(T, t) for larger t . When T satisfied thel -MAD property, we saw that it
was sufficient to have Algorithmbuild-list only consider intervals whose workload was
comprised of at mostN jobs. For the general case, however, this is not sufficient: Consider
a gmf taskT = ([91,1], [100,1], [5,5]). This task is clearly infeasible in itself (consider
its density); however, the smallest value oft for which dbf(T, t) > t is t = 100, and there
will be a total of 11 jobs with both arrival times and deadlines within this interval with a
cumulative execution requirement of 101.

Recall that Equation 1 permitted us to computedbf(T, t) for arbitrarily larget , given the
base values explicitly computed by Algorithmbuild-list. Let Dmax be defined as follows:

Dmax
def= max

0≤i<N
{Di }.

The following theorem provides the analog of Equation 1 for tasks that do not necessarily
satisfy thel -MAD property.

Theorem 3 dbf(t +m P) = dbf(t)+mE, where Dmax≤ t < Dmax+ P and m∈ N.

Proof: Similar to the derivation of Equation 1; details are omitted here.

As a consequence of this theorem, we know what Algorithmbuild-list must compute—a
lookup table of values ofdbf(T, t) for all t < Dmax+ P.

To summarize:

• Algorithm build-list, using a strategy very similar to the one depicted in Figure 3,
generates all non-redundent ordered pairs(“workload”, “interval size”) for all intervals

20 BARUAH, CHEN, GORINSKY AND MOK

of size< Dmax+P. This can be done in timeO((1+Dmax/P)N2·log((1+Dmax/P)N)).
And, each lookup of this table would take timeO(log((1+Dmax/P)N)). Observe that,
whenDmax ≤ P—as is the case withl -MAD tasks—these reduce to the complexities
of the corresponding operations in Section 3.1.

• Algorithm compute-dbf is modified as follows:

compute-dbf(t)

/* E
def=

N−1∑
i=o

Ei ; P
def=

N−1∑
i=o

Pi ; Dmin
def= min

o≤i≤N−1
{Di } ; Dmax

def= max
o≤i≤N−1

{Di } */

if t < Dmax + P−→ return 0

−→ return

(⌊
t − Dmax

P

⌋
E

+ get-from-list(Dmax+ (t − Dmax)modP)

)

• Definingγ (T) from the table generated by Algorithmbuild-list as in Equation 2, we
conclude that Theorem 2 holds for general gmf tasks as well, and can once again reduce
the problem of feasibility determination to one of feasibility determination for a set
of “regular” sporadic tasks. And, this system of sporadic tasks can be analyzed in
pseudo-polynomial time, provided the density of the task system isa priori bounded
from above by some constantc < 1,

4. Conclusions

Tasks that generate a potentially infinite sequence of frames, with consecutive frame ar-
rivals separated by a specified minimum time interval, arise frequently in real-time systems.
Starting with the seminal work of Liu and Layland (1973), several increasingly more so-
phisticated models have been proposed for such task systems. These include the model
devised by Mok (1983), and the more recent multiframe model of Mok and Chen (1996).
We have described here what we believe is the next logical generalization, presenting a
model which unifies the incompatible models in Mok (1983) and Mok and Chen (1996).
Somewhat surprisingly, while this new model has considerably more expressive power, it
turns out that feasibility determination in this generalized model is no more difficult (from
a run-time complexity point of view) than the earlier, simpler models—this we show by
actually designing a feasibility testing algorithm for systems of gmf tasks.

Future research efforts include (i) determining special subcategories of gmf tasks which
are practically significantand for which we can design feasibility tests more efficient than
the ones presented in this paper, and (ii) designing efficientfalse-negativefeasibility tests—
feasibility tests that always identify infeasible gmf systems, but may occasionally mis-label
a feasible system as beinginfeasible.

GENERALIZED MULTIFRAME TASKS 21

Appendix

In Section 3.2, we described how a gmf task system could be tested for feasibility by
reducing each gmf taskT to a setγ (T) of “regular” sporadic tasks. We now briefly outline
how feasibility determination of a system of gmf tasks may actually be performed starting
from first principles,withoutfirst reducing to regular sporadic tasks. Given a systemτ of
gmf tasks to be scheduled on a single processor, Procedurefeasibility (Figure 5) determines
if τ is feasible.

Each task is initially preprocessed by Algorithmbuild-list, and a priority queue is con-
structed that will contain future time-instants at which the sum of the demand bound
functions—

∑
Ti∈τ dbf(Ti , t)—is to be incremented, and by how much. (Note that it is

straightforward to determine, for any givento, the smallestt ′ > to at whichdbf(T, t) in-
creases again—from Algorithmcompute-dbf (Figure 4), it follows that this occurs at the
earliestt ′ > to at which either(i)get-from-list(t ′modP) > get-from-list(to modP), or
(ii) b(t ′ − Dmin)/Pc > b(to − Dmin)/Pc.) The variableScontains this sum of the demand
bound functions at the “current time,” which is intitally zero. Upon each iteration of the
loop, the current time is updated to the value of time returned by the priority queue, which is
when the next increment inS is to occur.S is updated to reflect this increase indbf(To, t) at
this new current timeto, and a new 3-tuple representing the next increment todbf(To, t)—at
time t ′—is inserted into the priority queue.

This loop iterates until at is found for which
∑

Ti∈τ dbf(Ti , t) > t ; if τ is feasible, it will
never terminate. However, using techniques very similar to those used in Baruah, Mok, and
Rosier (1990, Lemma 6) (see also Baruah, 1993), it can be shown that ifτ is infeasible, then
there is at for which Procedurefeasibility reports “infeasible” which is no greater than

ρ

1− ρ ·max
T∈τ
{(Po + P1+ · · · + PN−1)− Do} ,

whereρ
def= ∑

T∈τ (Eo + E1 + · · · + EN−1)/(Po + P1 + · · · + PN−1) is the density of the
task system.

References

Baruah, S., Mok, A., and Rosier, L. 1990. The preemptive scheduling of sporadic, real-time tasks on one processor.
Proceedings of the 11th Real-Time Systems Symposium, pp. 182–190.

Baruah, S. 1993.The Uniprocessor Scheduling of Sporadic Real-Time Tasks. PhD thesis, Department of Computer
Science, The University of Texas at Austin.

Buttazzo, G. C. 1997.Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications.
Assinippi Park Norwell, MA: Kluwer Academic Publishers.

Dertouzos, M. 1974. Control robotics: the procedural control of physical processors.Proceedings of the IFIP
Congress, pp. 807–813.

Jeffay, K., Stanat, D., and Martel, C. 1991. On non-preemptive scheduling of periodic and sporadic tasks.
Proceedings of the 12th Real-Time Systems Symposium, pp. 129–139.

Jeffay, K., and Stone, D. L. 1993. Accounting for interrupt handling costs in dynamic priority task systems. In
Proceedings of the 14th Real-Time Systems Symposium, pp. 212–221.

Liu, C., and Layland, J. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM20(1): 46–61.

22 BARUAH, CHEN, GORINSKY AND MOK

Mok, A. K. 1983. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Environment.
PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology. Available as Technical
Report No. MIT/LCS/TR-297.

Mok, A. K., and Chen, D. 1996. A multiframe model for real-time tasks.Proceedings of the 17th Real-Time
Systems Symposium.

