The International Journal of Time-Critical Computing Systems, 17, 5-22 (1999)
© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Generalized Multiframe Tasks

SANJOY BARUAH
The University of Vermont

DEJI CHEN
The University of Texas at Austin

SERGEY GORINSKY
New Jersey Institute of Technology

ALOYSIUS MOK
The University of Texas at Austin

Abstract. A new model for sporadic task systems is introduced. This mottled-generalized multiframe task
modet—further generalizes both the conventional sporadic-tasks model, and the more recent multiframe model
of Mok and Chen. A framework for determining feasibility for a wide variety of task systems is established; this
framework is applied to this task model to obtain a feasibility-testing algorithm that runs in time pseudo-polynomial
in the size of the input for all systems of such tasks whirsgsitiesare bounded by a constant less than one.

Keywords: recurring multiframe tasks, preemptive uniprocessor scheduling, hard deadlines, feasibility analysis

1. Introduction

Multiframe tasksvere introduced by Mok and Chen (1996), as a generalization to the well-
known periodic task model of Liu and Layland (1973). A multiframe task is represented
by a tuple(E, P), whereE = [Eo, E1, ..., En_1] is a vector ofexecution timesand P
is theminimum separation timeThe task generates an infinite successiofrahes the
ready times of consecutive frames are at I&a8te units apart, the execution requirement
of thei’'th frame { > 0) is Ej mogn, @and the deadline of each frameRdime units after its
ready time. Feasibility conditions were presented by Mok and Chen for the uniprocessor
static-priority scheduling of systems of such multiframe tasks.

In this paper, we study a natural generalization of the multiframe task model. In our
model—thegeneralized multiframe (gmf) task model—the multiframe model of Mok
and Chen is further generalized in that (i) the deadlines of frames are allowed to differ from
the minimum separation; further, all the frames need not have the same deadlines, and (ii) all
the minimum separations need not be identical. Formally, a gmfltaskcharacterized by
the 3-tuple(E, D, P), whereE, D andP areN-ary vectors Eo, Eu, ..., Ex_1] of execu-
tion requirements, g, Dy, ..., Dny_1] Of (relative) deadlines, and?, Py, ..., Py_1] of
minimum separations respectively. The interpretation is as follows: Tih&ame of task
T has an arrival timey, a deadliney + d;, and an execution requirementef where

e ay>0,andai11 > a + P modn,

6 BARUAH, CHEN, GORINSKY AND MOK

1 2 1 2 1
RO Rl 5 R3 14 5 RT];&

12 RG

Figure 1. Example.

e di = Djmoan, and
e & = Eimodn-

Example 1. T= ([1, 2,5, 1],[2, 2, 8,5],[3, 2, 3, 4]) is a gmf task withN = 4. Figure 1
depicts a legal sequence of frame arrivals, and the corresponding deadlings(Ror
denotes th&'th frame, and the number abo® denotes the execution requirementaj.
Observe that, aR3 andR4 demonstrate, it inot necessary that thiéth frame’s deadline
precede the arrival time of the+ 1)'th frame. (We point out that in this sequence of frame
arrivals, each frame arrives at the earliest instant that it is legal for it to do so. We will revisit
this scenario in Section 3.1.)

This Research

Our focus in this paper is on determining uniprocessor feasibility conditions for systems
of gmf tasks. That is, given a system of gmf tasks, how do we determine if they can
always (i.e., for any legal set of frame arrival times) be scheduled to meet all deadlines
on a single processor by an optimal uniprocessor scheduling algorithm such as Earliest
Deadline First (EDF) (Dertouzos, 1974) or Least Slack (Mok, 1983)? In order to answer
this question, we abstract away from gmf tasks in Section 2, and study a (very general)
category of task systems satisfying what we calltésk independence assumptior®r

such systems, we provide a general methodology, based upon the corampiaofd bound
functions for determining feasibility. We apply this methodology to systems of gmf tasks
in Section 3, to obtain an algorithm for feasibility determination for such systems. Perhaps
somewhat surprisingly, it turns out that this problem is no more difficult, from a run-time
complexity point of view, than determining feasibility in sporadic task systems (Baruah,
Mok, and Rosier, 1990; Baruah, 1993). As a corollary to our main results, we also obtain
an algorithm for determining feasibility for the multiframe model of Mok and Chen, that
complements the static-priority feasibility algorithm in Mok and Chen (1996).

Significance of this Research

The gmf task model is, in our opinion, the logical “next step” in the succession of models
that have been developed to represent recurring tasks with minimum separation constraints.
As was pointed out by Mok and Chen (1996), the simplest model—each task characterized

GENERALIZED MULTIFRAME TASKS 7

by an execution requiremeatand a minimum separatiop (deadlines are “implicit,” i.e.,

they are assumed to occpunits after the frame’s arrival)—is a straightforward extension

of the periodic task model of Liu and Layland (1973). Mok’s generalization (Mok, 1983)
explicitly added the deadling, with the interpretation that the deadline of a frame occurs

d time units after its arrival. The multiframe model of Mok and Chen (1996) permitted
each task to cycle through a given finite sequence of frame execution times, but maintained
the requirements that (i) each frame’s deadline occurs expaitlyits after its arrival, and

(i) successive frames arrive at legstime units apart. The gmf-task model allows for

the specification of arbitrary deadlines for each frame and, for good measure, permits the
minimum separations, too, to cycle through a given finite sequence of values.

At first glance, the gmf model may appear to be easily analyzed for feasibility by trans-
forming each gmf task into a set of regular sporadic tasks (in the sense of Mok (1983))
with “offsets.” Thus for example, a gmf tagkl, 2], [2, 2], [10, 10]) would be considered
equivalent, for feasibility-analysis purposes, to two sporadic tasksd T, such that both
have deadline 2 and minimum-separation 20has execution requirement 1, afghas
execution requirement 2 and is “offset” frofa by 10 units (in the sense that the first frame
of T, arrives at 0 and successive frames arrive exactly 20 units apart, while the first frame
of T, arrives at 10 and successive frames arrive exactly 20 units apart). However, such an
approach to feasibility-analysis is incorrect. (To see why, consider a gmf system consisting
of two tasks—the one above, and the tgdR, [2], [20]). Using the same reduction, this
second gmf task would transform to a sporadic task with execution requirement 1, that first
arrives at 0 and has successive arrivals exactly 20 units apart. The system would therefore
be considered feasible. However, it is actually infeasible—consider the situation when the
first frame of the second task arrives at the same instant as the second frame of the first
task.) The problem lies in the fact that such a transformation fails to correctly identify the
“worst-case” combination of frame arrivals: indeed, as we will see in the following sec-
tions, identifying such worst-case combinations of events is quite non-trivial, and a general
methodology for doing so is one of the main new ideas developed here.

Ideas very similar to the demand bound function have been previously used in feasibility-
analysis of hard-real-time systems (see, e.g., (Baruah, Mok, and Rosier, 1990; Jeffay, Stanat,
and Martel, 1991; Jeffay and Stone, 1993). Loosely speaking, the approach has consisted
of identifying acritical instant (Buttazzo, 1997, p. 79)—a “worst-case” scenario—and
ensuring that certaiprocessor demand criteriButtazzo, 1997, p. 102) are met during
this worst-case scenario. Unfortunately, such an approach is not applicable for feasibility-
analysis of gmftasks, in the sense that it is not in general possible to identify a unique worst-
case scenario for a given system of gmftasks. One of the research contributions of this paper
lies in extending feasibility-analysis techniques to new task models such as the gmf model,
on which the critical instant/processor demand criteria approach is not directly applicable.

2. General Framework

In this section, we consider a very abstract model of task systems. We study the feasibility
problem for this abstract model, and provide a framework for determining feasibility for
task systems in this model. This abstract model is defined as follows.

8 BARUAH, CHEN, GORINSKY AND MOK

A taskis defined to be an entity that generates a (possibly infinite) sequenjolesalr
frames Eachjobis characterized by arrival time, adeadling and a (worst-casexecution
requirement Each task is characterized bynarkload constraintwhich determines the
exact nature of the sequence of jobs that a task may generate. A set of jobs generated by
atask is calledegal if it satisfies the workload constraint associated with the tastask
systenconsists of several tasks which share a resource. This research is restricted to the
study of task systems having only one copy of the resource. This resource is assumed to be
completely preemptable.

Task Independence Assumptions

We make the following assumptions regarding the various tasks in a task system:

1. The runtime behavior of a task does not depend upon the behavior of other tasks in the
systemThat is, each task is an independent entity, perhaps driven by separate external
events. Itis not permissible for one task to generate a job directly in response to another
task generating a job. Instances of task systeatsatisfying this assumption include
systems where, for example, all tasks are required to generate jobs at the same time
instant, or where it is guaranteed that certain tasks will generate jobs before certain other
tasks. (However, such systems can sometimes nevertheless be represented in such a
manner as to satisfy this assumption, by modelling the interacting tasks as a single task
which is assumed to generate the jobs actually generated by the interacting tasks.)

2. Theworkload constraints can be specified without making any references to “absolute”
time That is, specifications such as “Taskgenerates a job at time-instant 3" are
forbidden.

There are several scenarios within which this assumption holds. Consider first a dis-
tributed system in which each task executes on a separate node (jobs correspond to
requests for time on a shared resource) and which begins execution in response to an
external event. All temporal specifications are made relative to the time at which the
task begins execution, which is n@priori known.

As another example, consider a distributed system in which each task (i.e., the associated
process) maintains its own (very accurate) clock, and in which the clocks of different
tasks are not synchronized with each other. The accuracy of the clocks permit us to
assume that there is no clock drift, and that all tasks use exactly the same units for
measuring time. However, the fact that these clocks are not synchronized rules out the
use of a concept of an absolute time scale.

(We observe that periodic task systems—where periodic Tagk specified by the
parameterstart-time s computation requirement andperiod p with the intepretation

that T must be scheduled farunits of time over intervald + kp, s + kp + p) for all
integerp—violate the task independence assumption since the start-times are defined in
terms of an absolute time scale. However, sporadic task systems (Mok, 1983; Baruah,
Mok, and Rosier, 1990; Baruah, 1993), specified in terms of computation requirements,

GENERALIZED MULTIFRAME TASKS 9

relative deadlines, and minimum separations, satisfy this assumption, as do systems of
gmf-tasks.)

These assumptions concern the process by which jobs (frames) are generated by the tasks
in the system; once generated, the jobs (each characterized by an arrival time, an execution
requirement, and a deadline) are independent of each other. That is, while the task inde-
pendence assumptions restrict the job-generation process, they make no assertions about
the interactions of the jobs once they have been generated. (Thus for instance, a restriction
that jobs generated by a particular task must complete execution in FCFS ordemabuld

fall within the scope of these assumptions.)

In terms of legal sets of jobs, the first task independence assumption implies that a set
of jobs generated by an entire task system is legal in the context of the task system if
and only if the jobs generated by each task are legal with respect to the constraint as-
sociated with that task. Letting an ordered 3-tufdee, d) represent the job generated
by some taskl' with arrival timea, execution requiremerd, and deadlinel, the second
task independence assumption implies thdtaf, e, do), (a1, €1, d1), (@, €,dz) ...} is
a legal arrival set with respect to the workload constraint for fskhen so is the set
{(@o — X, €&,do — X), (@1 — X, €1,d; — X), (a2 — X, &, d2 — X) ...}, wherex may be any
real number.

The task independence assumptions are extremely general and are satisfied by a wide
variety of the kinds of task systems one may encounter in practice. As described above,
sporadic task systems satisfy these assumptions, as do “worst-case” periodic task systems
(Liu and Layland, 1973) (which are periodic task systems where each task may choose any
start-time—it is proved (Liu and Layland, 1973) that the worst-case occurs when all tasks
have the same start time), even if each periodic task may spedépdalinein addition to
computation requirment and period, and systems of multiframe tasks (Mok and Chen, 1996).
So do more sophisticated systems, such as, for example a teleconferencing application: “A
process generates successive multi-packet video-message at;l6ast units apart, and
each video-message is followed by a multi-packet audio-message vgthiime units
(p2 < p1/3),” or the system described below in Example 2.

Example 2. Consider a system of two tasksT; andT, that share a resource (Figure 2).
TaskT; may begin execution at any time, and generates 3 jahs-afrives at the shared
resource immediately wheR begins execution);, arrives between 1 and 10 time units
after T; begins execution, and; 3 arrives exactly 6 time units aftéi; begins execution.
TaskT,, too, may begin execution at any time, and generates 2 jobsJtarriving no
earlier than 3 time units aftél, begins execution, and,, arriving between 2 and 8 time
units afterJ;;. We will formally prove later in this section that this task system is in fact
infeasible.

It is noteworthy that determining feasibility for many interesting tasks systems not sat-
isfying the task independence assumptions (such as periodic task systems with deadlines
not equal to period) turns out to be computationally difficult (often NP-hard), and hence of
limited interest from the perspective of efficient determination of feasibility.

10 BARUAH, CHEN, GORINSKY AND MOK

T T
Ji request(1,9); idle(3.50):
Jiz (idle(1. 10); request(1.2)) | Jyy request{2,4):

{l Jop o {idle(2,8); request(3,7))
Jis (1d1e(6.6); request (2. 3))

The mrequest(w.y)” command issucs a non-blocking request for & units of time on the
shared vesource with o deadline y time units from the instant the request is made. The
“idle(x, y) T command indicates that the task is idle (actually, doing something that does not
involve the shared resource) for an intereal of time thal is at least 2 and no more than y units
long. The " indicates sequential composition, and the *||7 indicates parallel composition.
Each task may begin excculion at any time.

Figure 2. Example tasks.

Definition: Demand Bound FunctionLet T be a task, antla positive real number. The
demand bound functiabf(T, t) denotes the maximum cumulative execution requirement
by jobs ofT that have both arrival times and deadlines within any time interval of duration

Example 3. Consider again the example task system from Example 2. We plot the demand
bound functions for task§; andT, below, for the duration G< t < 10:

6 6
4 4
dbf(Ty, t) dbf(Tz, t)
2 2
———+—+—+—+—+>
2 4 6 8 10 2 4 6 8 10
t t

These functions have been determined by careful examination of the structures of the tasks;
we illustrate the process by means of a few examples. In general, foF; amyd anyt,
computingdbf(T;, t) may require exhaustive-search to determine the maximum cumulative
execution requirement by jobs ©f with both arrival-times and deadlines within an interval
of lengtht. Lett; denote the time at which tagk begins execution:

dbf(Ty, 3) = 3: If J;2 and Ji3 both arrive at timé; + 6, then they both have their arrival
times and deadlines in the intervéd f 6, t; + 9).

dbf(Ty, 9) = 4: If Jio arrives betweemty; + 1 andt; + 7, thenJy, Ji2 and Ji3 all have
arrival times and deadlines in the intervgl f; + 9).

GENERALIZED MULTIFRAME TASKS 11

Lett, denote the time at which tadk begins execution, and letdenote the arrival time
of Jo; (t/ >t + 3)

dbf(T,, 4) = 2: This corresponds to the interval betweg#'’s arrival time and deadline.

dbf(T,, 7) = 3: This corresponds to the interval betwegg's arrival time and deadline.

dbf(T,, 9) = 5: Supposel,; arrives at the earliest possible time—i.et’at 2. Then both
Jo1 and J,, have their arrival times and deadlines in the intervat{ + 9).

Theorem 1 Task systemis infeasible if and only i} ", dbf(T, t) > t for some positive
real number t.

Proof: We prove the implicaton in one direction here, and outline how the other direction
may be proved. The proof is similar to ones that appear in Baruah, Mok, and Rosier (1990),
Baruah (1993), the interested reader is referred there for further details.

If: Suppose tha} ;. dbf(T, t,) > t,. Consider any time intervat, ts + to).

For eachTl € 7, letw(T) def dbf(T, t,). By the definition of demand bound functions,

there is an interval of duratioty during whichT can generate jobs with a total execution
requirement equal te(T), such that both their arrival times and deadlines lie within the
interval. As a consequence of the task independence assumption, it follows taat
generate a similar set of jobs with arrival time and deadlines within the integyval§ to),

such that the total execution requirement of these jobs isual39. Let R(T) denote this

set of jobs. Itis straightforward to see that no scheduling algorithm can schedule the set of
jobsJ; ., R(T), since each job has arrival time and deadline within the intetyakf-t,),

and the total execution requirement of all the jobs exceeds the length of the interval.

Only if: Let r be an infeasible task system. There are sets of johsfof which EDF
will fail to meet all deadlines—call such sets of jabgeasible setsf r. Define aminimal
infeasible sebf to be an infeasible set efsuch that no proper subset of it is an infeasible
set ofr. Let § be such a minimal infeasible subsetwof Let ts denote the arrival time
of the earliest-arriving job it§,, and lett; denote the latest deadline 8. Consider the
EDF-schedule 0§,. It must be the case that

e This EDF-schedule misses a deadlinesat®ince$, is infeasible, some deadline must
be missed. If the deadline is missedjak t;, then the set of jobs i, with deadlines
< t; would be infeasible, contradicting our assumption tRais a minimal infeasible
set ofz.

e This EDF-schedule never idles the processor over the intgtydk]. For a proof by
contradication, assume that the processor was idled at som&tim. Then the set
of jobs in S, with arrival-times> t, would be infeasible, contradicting our assumption
that S, is a minimal infeasible set af.

The cumulative execution requirements of the jobsSintherefore exceeds — ts; by
definition of dbf, this implies that)";_, dbf(T,t; —ts) > t; — ts, and the theorem is
proved.]

12 BARUAH, CHEN, GORINSKY AND MOK

The statement of Theorem 1 immediately suggests a procedure for checking whether a
systemr of tasks is feasible:

1. Determine the demand bound function for every fash t.

2. Determine if there existstac R such that

(}:dma:o)>t
Ter

Example 4. To verify whether task system from Example 2 is feasible, it suffices
to computedbf(Ty, t) + dbf(T,, t) at all pointst such thatdbf(T,,t~) < dbf(Ty, t) or
dbf(Tz, t7) < dbf(Ty, t):

t | 2 | 3 | 4 | 7 | 9
dbf(Ty, t) + dbf(T,,t) [1+0=1]3+0=3|3+2=5|3+3=6|4+5=9

Sincedbf(Ty, 4) + dbf(T,, 4) > 4, we conclude that is infeasible. An example of an
unschedulable scenario is the following: Consider an intetyals[+ 4). Suppose that
T1 begins execution &t — 6, and jobsJ;;, Jiz, and Ji3 arrive at timeds — 6, ts, andts
respectively. Suppose further thgt begins execution dt — 3, and has johl,; arrive at
timets . Then jobsl;,, Ji3 and J,, , with a total execution requirement of 5, all arrive and
have deadlines within the interval[ts + 4), and are therefore unschedulable:

4 J]_l J13
Iy A
T1 i Jip
1]]]] Y] Y Y]]] L
I T T T T T T T T >
-6 —4 -2 ts 42 +4 +6 +8
1
A
T,
1]]]]]]]] Y]] L
I T T T T T T T T T T T >
-6 —4 -2 ts 42 +4 +6 +8

Comment. Since the demand bound function for each tashkas an infinite domain (the

real numbers), it is not possible to explicitly compute the demand bound functions in (1)
above. Instead, an attempt must be made to implicitly deterdbf@d, t) for givenT and

t, as and when required. In order to be able to do so, we must know more about the exact
nature of the tasks, and the manner in which they generate jobs.

GENERALIZED MULTIFRAME TASKS 13

3. Feasibility Determination in gmf Task Systems

We now return to the problem of determining feasibility for a system of gmf tasks. Ob-
serve that gmf task systems satisfy the task independence assumptions of Section 2; hence
the feasibility-determination methodology described above—determine the demand-bound
functiondbf(T, t) for every taskT and every time-instarit and then determine if there is

at such that}_;_, dbf(T,t)) > t—is applicable.

The l-MAD Property

A gmf-task T satisfying thelocalized Monotonic Absolute Deadlines (I-MAPjoperty
satisfies the additional constraint thatiitth frame has a deadline no later than that of its
(i + D’th frame; i.e., thaD; < B + D(i+1ymodn for all i. (Observe that the example task
system depicted in Figure 1 satisfies tHdAD property.)

The|-MAD property accurately captures the characteristics of a wide variety of real-
time applications. Consider, for example, an application in which a remote multipurpose
sensor samples several different kinds of signals in a round-robin fashion, with each kind
characterized by a size (e.g., number of packets) and a latency requirement, that need to
be transported over a packet-based circuit-switched network to a processing center. The
sensor can be represented as aTask(E, 5, I5), with N—the dimension of the vectors—
equal to the number of different kinds of data sampledand D; representing the size
and the latency requirement of th¢h kind of data, andP, representing the time lapse
between the instants a sample fromittle and (i + 1) modN'th kind of data is obtained.

With the network modelled as the shared resource, antkbh&D property reflecting the

fact that data from the sensor is sent into the network in a first-in first-out fashion, this
model very accurately represents the traffic generated by the sensor and injected into the
network. Several other applications (including the ones described in Mok and Chen (1996))
particularly from the domain of real-time networking, are naturally described as gmf tasks
satisfying thd -MAD property.

Our goal in this section is to design an efficient feasibility-analysis test for systems of
gmf-tasks, with or without thé-MAD property. For ease of exposition, we first focus
on systems satisfying tHeMAD property—in Sections 3.1 and 3.2 below, we present a
feasibility test for a system of gmf-tasks all of which satisfy tHdAD property. Later
(Section 3.3) we outline how to extend this feasibility test to handle systems of tasks that
may not bd-MAD—it will be seen here that all the major ideas are exactly those used in
thel-MAD case.

3.1. Determining the Demand Bound Functions

Recall that a gmf tasR is characterized by the 3-tupl&, D, P), whereE, D and P
areN—ary vectors Eo, Eq, ..., EN,J_], [Do, Dyq,..., DNfl]: and [Po, Pi..., PNfl]: with
Di < P 4 D(+1)modn for alli.

14 BARUAH, CHEN, GORINSKY AND MOK

By definition,dbf(T, t) is a measure of the workload that can be generated byltasier
a time interval of length. For any intervalt, t, + t], only those jobs with arrival-times
at or aftert, anddeadlines at or beforg + t would contribute to this workload; hence the
worst-case workload, as quantified #gf(T, t), occurs (for each value @j when taskT
generates a job at some time instiptand then generates subsequent jobs at the earliest
possible times in order to have as many jobs as possible with deadlines at ortpefdre
Unfortunately, it is not immediately obvious what this first job is, and indeed the choice of
the first job for the interval which determindbf(T, t) depends upon the choice hfand
is different for differentt. (For example, in Figure dbf(T, 2) is defined by jobR1 while
dbf(T, 5) is defined by the joliR0 followed as soon as legally possible by the Rb.)
Consider the set of jobs(T) = {R,, Ry, Ry, ...} such that (lettincga(R), e(R)) and
d(R;) denote the arrival time, execution requirement, and deadline respectively Bf)job

o a(Ry) =0anda(Ri1) =a(R) + P moan,
e d(R)=a(R) + Dimodn, and
° e(Ri)inmodN-

That is, Ry, Ry, Ry, ... denote the jobs that are generatedToyf T generates its first
job—R,—at time 0, and generates each subsequent job at the earliest possible time. (Fig-
ure 1 denotes the first few jobs i(T) for the example multiframe task considered in
Example 1.)

The crucial observation is that, if jdR is to be the first job of an interval that determines
dbf(T, t) for somet, then the jobs which contribute to this worst-case workload are exactly
those jobs inthe ordered sequenBg [R 11, Ri 2, ...,]which have deadlines a(R;) +t.

One could therefore in principle identify all candidate intervals that determine the value
of the demand-bound function for different valuestdsy simply enumerating, for each
pair of positive integers, j, the cumulative execution requirement and interval-size if job
R were to be the first job of dbf-determining interval and jolR ; were to be the last

job in the interval. The demand bound function can be determined from this enumerated
list: for eacht, dbf(T, t) is equal to the largest execution requirement from among all the
enumerated pairs which have interval-size no greaterth&f course, such a procedure
will never terminate, since the variableand j grow without bound. (Observe, however,
that we only need consid&® < {R,, Ri, Ry, ..., Ry_1}; thisis because every sequence of
jobs [Rn+i, Rn+i+1, - - -, Ruitj] generates exactly the same ordered pair as the sequence
[R.Ru.-... Rsjl)

Figure 3 presents a procedure that constructs a list of execution-requirments generated
by every possible sequenogat most N jobsand the size of the interval within which this
execution requirement must be met. Algoritimild-list runs in timeO(N?log N) and
produces a list sorted by interval size such that, for a giyelbf(T, t) can be determined
from this list in O(log N) time, using binary search (provided, of course, thet small
enough to be present in this list).

Example 5. Consider once again the gmf ta3kof Example 1. Algorithmbuild-list
generates one ordered pair for each combinationad j, asi and j each range over

GENERALIZED MULTIFRAME TASKS 15

Algorithm build-list

1. Generate ordered pairs (“workload”, “interval size”) as follows:
Fori«<0toN -1, do
Forj < 0to N —-1do
generate the ordered pair (e(R;) + e(Riy) + - +e(Riy;), d(Riy;) —a(Ry)).
2. Sprt the ordered pairs into an array in increasing order of interval size (within interval
size, in decreasing order of workload).

3. Delete all those ordered pairs whose workloads are not strictly larger than the workloads
of all ordered pairs occurring prior to them in the sorted array.

Figure 3. Constructing a lookup list ddlbf(T, t) for smallt.

0,1, 2, and 3:

j=0 j=1 j=2 j=3
L2 (35 (813 (913
2,2 (7,100 (8,10 (9,1)
(5.8 (68 (7.9 (912
(L5 26 (49 (917

o
WN RO

After sorting, the list looks as follows((2, 2), (1, 2), (3, 5), (1,5), (2, 6), (6, 8), (5, 8),
(7,9), (4,9, (8,10, (7, 10), (9, 11), (9, 12), (9, 13), (8,13), (9, 17)).
Upon deleting redundant pairs, the remaining ordered pairs are:

((2,2,)(3,5), (6,8), (7,9), (8 10), (9, 11))

Consider now an intervald, t;] encompassingiorethanN jobs. LetRs be the first, and
R the last, job contained entirely within this interval:

sE€mini sa(R) =t f E'maxi 5d(R) <t

Observe that the total execution requirement of all the taskgTin over the intervalt, t¢]
is ngigf e(Ri)

Suppose that there age\ +r jobs inp(T) in the interval {s, t;], wherer < N. Thatis,
r andq are defined thus:

rdzef(f—s+1)modN; qd=9f(f—s+1—r)/N.

16 BARUAH, CHEN, GORINSKY AND MOK

compute-dbf(z)

N-1 N-1
*YEES E; PY ; n S mi 3%
/ 2:20 5 ; Py Duin = min {Di}*/
if t < Dpin — return = 0
t— Dmin .
0 — return ([TJ E + get-from-list(Dy + (t — Dyyin) mod P))

Figure 4. Algorithm compute-dbf.

TheseqN +r jobs inp(T) that contribute to the workload ove [t;] can be grouped
in the following manner:

Rs Reyi o e e =
Rnys Ruystz oo oee oo Rsyon-1
R(q—l)N+s R(q—l)N+s+1 """"" Rs+q N-1
RoN+s RyNtst1 o Ry

The jobs in each row in the above grouping together have a total execution requirement of
EY Zi'\‘:’ol E;; the total execution requirement of all the tasks together is therefore

dE+ Y eR). (1)

s+qN<i<f

Sincea(Rsiqn) = ts + gP, it follows that the total execution requirement ovey; {;]

is equal tog E plus the total execution requirement over+ qP, t¢]; furthermore, since
the interval {s + qP, t;] containsr < N jobs, the cumulative execution-requirement
over this interval can be obtained from the list generated by Procelbluitd-list.
Algorithm compute-dbf (Figure 4) is based upon this observati@h,;, denotes the small-
est relative deadline. The function-cght-from-list(t) uses the sorted list constructed by
Algorithm build-list to returndbf(T, t)—as discussed above, this can be accomplished in
O(log N) time.

Example 6.Consider once again the taSkrom Example 1, upon which we had simulated
the behavior of Algorithnbuild-list in Example . Suppose now that we wish to determine
dbf(T, 15) by Algorithm compute-dbf. Noting thatP = 12, Dy,jn = 2, andE = 9,

GENERALIZED MULTIFRAME TASKS 17

we have

dbf(T, 15 = ({%J -9+ get — from — list(2 + (13 mod 12)) =9+4+2=11

100—-2
12

dbf(T, 100 = ({ J - 9+4get — from — list(2+ (98 mod 12)) =72+2=74.

11-2
dbf(T, 11) = QTJ -9+ get — from — list(2 + (9 mod 12)) =0+9=09.

3.2. Feasibility Determination

In Section 3.1 we have seen how Algorithmild-list preprocesses a given gmf taBkn
O(NZ?log N) time (whereN is the dimension of the vectors representiigto generate
data-structures that allodbf(T, t) to be computed it (log N) time for anyt.
_LetT = (E, D, P) be any gmf taskE = [E, ..., Ex_1]; D = [D. ..., Dy_1]; and
P =[P, ..., Py_1]. We now define areduction fromto a sety (T) of “regular” sporadic
tasks with deadlines in the sense of Mok (1983) (recall that such tasks are represented by a 3-
tuple(e, d, p), whereerepresents the execution requirement of each frame (job) generated
by the taskd the time interval between the arrival-time and the deadline of each frame, and
p the minimum time interval between the arrival instants of successive frames).

Let {((wq, t1), (wo,), ..., (wm, tm)) denote the sorted list dfvorkload, interval-size
ordered pairs generated by Algorithmaild-list on taskT. (Observe thaty; < wj,1, and
ti <ty foralli,1<i < m;andthatw, = E, whereE is as defined in Figure 4.) We
define the sey (T) as follows:

def
)/(T) :e { (w07 tOﬂ P)’ (wl — Wo, t17 P)v (w2 — wy, t27 P)ﬂ s

covs (Wme1 — Wm-2, tm=1, P), (Wm — wm-1, tm, P) })
whereP &' Py + Py + Py 4+ -+ + Py_1.

Example 7. In Example , we had traced the behavior of Algoritbaild-list on the task
T of Example 1. Using the sorted list of ordered pairs generated by Algottkild-list,
y(T) is seen to equal

{(2,2,12),(1,5,12),(3,8,12), (1,9,12), (1,10,12), (1, 11, 12)}.
Itis not hard to see that the workload generateg B) when each task in(T) generates

its first job at time 0, and each subsequent job as soon as legal (i.e., exactly & tifes
for all k € N) is exactly the same as that generategky):

18 BARUAH, CHEN, GORINSKY AND MOK

Procedurefeasibility(t)
e Call Algorithm build-list on eachT; € t.

e Construct a priority queu® of 3-tuples(time, task-id, demangdwith the 3-tuple with
the smallest value of time having greatest priority.

e ForeachtasKj, lett; be the smalledtsuch thadbf(T;, t) > 0—; is easily determined
from the list constructed by Algorithrouild-list. Insert(t;, T;, dbf(T;, tj)) into Q

S«<0
repeat{
(to, To, d) < deletemiriQ)
S « S+ d;if (S> ty) return“infeasible”
determine the smallest > t, such thadbf(Ty, t’) > dbf(T,, to)
insert(t’, Ty, dbf(Ty, t") — dbf(T,, to)) into Q
}

Figure 5. Feasibility determination for a system of gmf tasks.

Lemma 1 For all gmftasks T and all time intervals t

dbf(T.t) =) dbf(T’.1).

T'ey(T)

Theorem 2 follows.

Theorem 2 A system of gmf tasksis feasible on a single processor if and only if the
system of sporadic tasks

Urm

Ter

is feasible on a single processor (here the “union” operatof—defines a “multiset” union;
i.e., duplicate tasks are not removed from the resulting system).

Thus, we have reduced the problem of determining feasibility of a set of gmf tasks to
the problem of determining feasibility of a set of “regular” sporadic tasks. This reduction
consists of calls to Algorithrbuild-list, followed by a simple multiset union operation, and
is easily seen to tak®(n?logn) time, wheren is the length of the representation of the
gmf task system.

The problem of determining feasibility of a system of sporadic tasks has been previously
studied (Baruah, Mok, and Rosier, 1990; Baruah, 1993). The major result is that the
sporadic task systerf(e, di, p1), ..., (ér, th, pn)} can be tested for feasibility in time

def n
O(logn - l%p -MmaX<i<n{pi — di}), wherep = >, %. As a consequence, we conclude

GENERALIZED MULTIFRAME TASKS 19

that a gmf task system consisting oih gmf tasks be tested for feasibility in time

O(Iogn- L 'maX{(Po+F’1+-~-+PN—1)—D0}),
1—p Ter

wherep &S (Eo+ E1+ -+ + En_1)/(Po + PL + - - + Py_y) is thedensityof the

task system. No feasible task system can have a density greater than one; for task systems
with densitya priori bounded from above by some constant 1, Theorem 2 suggests a
pseudopolynomial-time algorithm for determining feasibility for a system of gmf tasks.

3.3. GMF-Task Systems Without tHeMAD Property

Inthe preceding, we have assumed that the gmf-task system satisfiddAizproperty—
that each tasK satisfiedD; < P + D(+1ymoan for all i. We had argued that such task
systems are likely to be the ones that arise most frequently in practice, and had hence devel-
oped an efficient feasibility test for these systems. For the sake of completeness, we briefly
outline how the preceding results may be extended to handle systems of tasksrbat do
satisfy the -MAD property.

Foreach gmftask, Algorithmbuild-listwill once again build a table containingpf(T, t)
for small enouglt, and an analog of Equation 1 will form the basis of using this table to
computedbf(T, t) for largert. WhenT satisfied thd -MAD property, we saw that it
was sufficient to have Algorithrbuild-list only consider intervals whose workload was
comprised of at mod\l jobs. For the general case, however, this is not sufficient: Consider
a gmf taskT = ([91, 1], [100, 1], [5, 5]). This task is clearly infeasible in itself (consider
its density); however, the smallest valuetdbr which dbf(T, t) > t ist = 100, and there
will be a total of 11 jobs with both arrival times and deadlines within this interval with a
cumulative execution requirement of 101.

Recall that Equation 1 permitted us to compdid(T, t) for arbitrarily larget, given the
base values explicitly computed by Algorithmaild-list. Let D4 be defined as follows:

Dinax = max(D;).
The following theorem provides the analog of Equation 1 for tasks that do not necessarily
satisfy the -MAD property.
Theorem 3 dbf(t + mP) = dbf(t) + mE, where Rax <t < Dmax+ P and me N.
Proof: Similar to the derivation of Equation 1; details are omitted here. [|
As a consequence of this theorem, we know what Algoritiuifd-list must compute—a

lookup table of values albf(T, t) for allt < Dmax+ P.
To summarize:

e Algorithm build-list, using a strategy very similar to the one depicted in Figure 3,
generates all non-redundent ordered pdimorkload”, “interval size” for all intervals

20 BARUAH, CHEN, GORINSKY AND MOK

of size< Dmax+ P. This canbe donein tim® ((1+Dpmax/ P) N2:10g((1+Dmax/ P)N)).
And, each lookup of this table would take tifd&log((1+ Dmax/P)N)). Observe that,
whenDpax < P—as is the case withMAD tasks—these reduce to the complexities
of the corresponding operations in Section 3.1.

e Algorithm compute-dbf is modified as follows:

compute-dbf(t)

o<i<N-1

N-1 N-1
def def def . def
PFEZ i§:0: E: P= i§:0: P Dmn= min {Di}; Dmax= max {Di}*

ift < Dmaxt P—> return 0

t—D
O — return ({Tmaxj E

+ get-from-list(Dmax + (t — Dmax) mod P))

e Definingy (T) from the table generated by Algorithbuild-list as in Equation 2, we
conclude that Theorem 2 holds for general gmf tasks as well, and can once again reduce
the problem of feasibility determination to one of feasibility determination for a set
of “regular” sporadic tasks. And, this system of sporadic tasks can be analyzed in
pseudo-polynomial time, provided the density of the task systearpisori bounded
from above by some constant< 1,

4. Conclusions

Tasks that generate a potentially infinite sequence of frames, with consecutive frame ar-
rivals separated by a specified minimum time interval, arise frequently in real-time systems.
Starting with the seminal work of Liu and Layland (1973), several increasingly more so-
phisticated models have been proposed for such task systems. These include the model
devised by Mok (1983), and the more recent multiframe model of Mok and Chen (1996).
We have described here what we believe is the next logical generalization, presenting a
model which unifies the incompatible models in Mok (1983) and Mok and Chen (1996).
Somewhat surprisingly, while this new model has considerably more expressive power, it
turns out that feasibility determination in this generalized model is no more difficult (from

a run-time complexity point of view) than the earlier, simpler models—this we show by
actually designing a feasibility testing algorithm for systems of gmf tasks.

Future research efforts include (i) determining special subcategories of gmf tasks which
are practically significarand for which we can design feasibility tests more efficient than
the ones presented in this paper, and (ii) designing effitase-negativéeasibility tests—
feasibility tests that always identify infeasible gmf systems, but may occasionally mis-label
a feasible system as beingeasible.

GENERALIZED MULTIFRAME TASKS 21

Appendix

In Section 3.2, we described how a gmf task system could be tested for feasibility by
reducing each gmftask to a sety (T) of “regular” sporadic tasks. We now briefly outline
how feasibility determination of a system of gmf tasks may actually be performed starting
from first principleswithoutfirst reducing to regular sporadic tasks. Given a systewhi
gmftasks to be scheduled on a single processor, Proctshsibility (Figure 5) determines

if 7 is feasible.

Each task is initially preprocessed by Algorithhuild-list, and a priority queue is con-
structed that will contain future time-instants at which the sum of the demand bound
functions—) ;. ., dbf(Ti, t)—is to be incremented, and by how much. (Note that it is
straightforward to determine, for any givép the smallest’” > t, at whichdbf(T, t) in-
creases again—from Algoritheompute-dbf (Figure 4), it follows that this occurs at the
earliestt’” > t, at which either(i)get-from-list(t’ modP) > get-from-list(t, modP), or
(ii) L(t" — Dmin)/P] > [(to — Dmin)/PJ.) The variableS contains this sum of the demand
bound functions at the “current time,” which is intitally zero. Upon each iteration of the
loop, the current time is updated to the value of time returned by the priority queue, which is
when the next increment i8is to occur.Sis updated to reflect this increasedbf(T,, t) at
this new current timé,, and a new 3-tuple representing the next incremedifor,, t)—at
timet’—is inserted into the priority queue.

This loop iterates until &is found for whichy _ . dbf(T;, t) > t;if 7 is feasible, it will
never terminate. However, using techniques very similar to those used in Baruah, Mok, and
Rosier (1990, Lemma 6) (see also Baruah, 1993), it can be shown thafiffeasible, then
there is & for which Procedurdeasibility reports “infeasible” which is no greater than

o
1 a{(Po+ Pr+---+ Pny_1) — Do},
—p Ter

wherep def Y 1ee(Eo+ E1+4 -+ En-1)/(Po + P14+ --- + Py_2) is the density of the
task system.

References

Baruah, S., Mok, A., and Rosier, L. 1990. The preemptive scheduling of sporadic, real-time tasks on one processor.
Proceedings of the 11th Real-Time Systems Symppguri82—190.

Baruah, S. 1993The Uniprocessor Scheduling of Sporadic Real-Time Td3kB thesis, Department of Computer
Science, The University of Texas at Austin.

Buttazzo, G. C. 1997Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications
Assinippi Park Norwell, MA: Kluwer Academic Publishers.

Dertouzos, M. 1974. Control robotics: the procedural control of physical proces@mrseedings of the IFIP
Congresspp. 807-813.

Jeffay, K., Stanat, D., and Martel, C. 1991. On non-preemptive scheduling of periodic and sporadic tasks.
Proceedings of the 12th Real-Time Systems Symppgjurt29-139.

Jeffay, K., and Stone, D. L. 1993. Accounting for interrupt handling costs in dynamic priority task systems. In
Proceedings of the 14th Real-Time Systems Symppgura12-221.

Liu, C., and Layland, J. 1973. Scheduling algorithms for multiprogramming in a hard real-time environment.
Journal of the ACM20(1): 46-61.

22 BARUAH, CHEN, GORINSKY AND MOK

Mok, A. K. 1983. Fundamental Design Problems of Distributed Systems for The Hard-Real-Time Environment
PhD thesis, Laboratory for Computer Science, Massachusetts Institute of Technology. Available as Technical
Report No. MIT/LCS/TR-297.

Mok, A. K., and Chen, D. 1996. A multiframe model for real-time tasksoceedings of the 17th Real-Time
Systems Symposium

