
RL-Cache: Learning-Based Cache Admission
for Content Delivery

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, Member, IEEE, and Ramesh K. Sitaraman, Fellow, IEEE

Abstract—Content delivery networks (CDNs) distribute much
of the Internet content by caching and serving the objects
requested by users. A major goal of a CDN is to maximize the
hit rates of its caches, thereby enabling faster content downloads
to the users. Content caching involves two components: an
admission algorithm to decide whether to cache an object and
an eviction algorithm to determine which object to evict from
the cache when it is full. In this paper, we focus on cache
admission and propose a novel algorithm called RL-Cache that
uses model-free reinforcement learning (RL) to decide whether
or not to admit a requested object into the CDN’s cache. Unlike
prior approaches that use a small set of criteria for decision
making, RL-Cache weights a large set of features that include
the object size, recency, and frequency of access. We develop a
publicly available implementation of RL-Cache and perform an
evaluation using production traces for the image, video, and web
traffic classes from Akamai’s CDN. The evaluation shows that
RL-Cache improves the hit rate in comparison with the state of
the art and imposes only a modest resource overhead on the CDN
servers. Further, RL-Cache is robust enough that it can be trained
in one location and executed on request traces of the same or
different traffic classes in other locations of the same geographic
region. The paper also reports extensive analyses of the RL-
Cache sensitivity to its features and hyperparameter values. The
analyses validate the made design choices and reveal interesting
insights into the RL-Cache behavior.

Index Terms—Content delivery network; caching; cache ad-
mission; hit rate; object feature; neural network; direct policy
search; Monte Carlo sampling; stochastic optimization; traffic
class; image; video; web; production trace.

I. INTRODUCTION

Today’s Internet heavily relies on content delivery networks
(CDNs) to provide low-latency access to its content for billions
of users around the globe. A large CDN deploys hundreds of
thousands of servers worldwide so that at least some servers
of the CDN lie in each user’s network proximity. When a user
requests an object such as an image, video, or web page, the
user’s request goes to a nearby server of the CDN [1]. If the
cache of the CDN server stores the requested object, i.e., a
hit happens, the user promptly receives the object from the
server’s cache. On the other hand, if the requested object is

The first two authors contributed equally to the paper.
Vadim Kirilin started this research at IMDEA Networks Institute, Spain

and is currently with Yandex LLC, Russia (email: durrdurr@yandex-team.ru).
Aditya Sundarrajan performed this research at the University of Massachusetts
Amherst, USA and is currently with Facebook, Inc., USA (email: asun-
dar@cs.umass.edu). Sergey Gorinsky is with IMDEA Networks Institute,
Spain (email: sergey.gorinsky@imdea.org). Ramesh K. Sitaraman is with the
University of Massachusetts Amherst and Akamai Technologies, Inc., USA
(email: ramesh@cs.umass.edu).

This research was supported in part by the Regional Government of
Madrid (grant P2018/TCS-4499, EdgeData-CM) and U.S. National Science
Foundation (grants CNS-1763617 and CNS-1717179).

not in the server’s cache, i.e., a miss occurs, the CDN server
delivers the object to the user after fetching the object from
the content provider’s origin server, and the delivery might be
slow because the origin server might be far away.

Decreasing the user-perceived latency of content delivery
constitutes the main goal of the CDN. Hence, the CDN strives
to maximize the server’s hit rate defined as the percentage of
requests that are served straight from the cache. When the
CDN server receives an object request, the server might need
to make admission and eviction decisions. If the request is
a miss, the server must decide whether to admit the fetched
object into the cache. Furthermore, if the server decides to
cache the fetched object, and the cache is already full, the
server must decide which object(s) it should evict from the
cache to make space for the new arrival. For example, Least
Recently Used (LRU) is a simple eviction policy that discards
the least recently served object. Major CDNs employ LRU
and its variants, such as Segmented LRU (SLRU) [2], for
cache eviction. Researchers have proposed a large number of
more sophisticated eviction algorithms that are more difficult
to implement in practice, e.g., Greedy-Dual-Size-Frequency
(GDSF) [3]. The work on admission algorithms is less exten-
sive and includes SecondHit [4] and AdaptSize [5].

Our goal is to investigate whether Machine Learning (ML)
techniques can increase cache hit rates in typical CDN pro-
duction settings, without adding excessive overhead or re-
quiring major software changes. This paper examines ML-
based algorithms for cache admission, leaving the question
of eviction improvement for future work. Despite the exten-
sive prior research on cache eviction, nearly all production
content caches – including Akamai caches [6], Varnish [7],
Memcached [8], and Nginx [9] – use LRU variants as their
default eviction algorithm. LRU’s popularity arises due to
easy implementation combined with very good hit rates in
production settings. Consequently, similar to the state-of-
the-art AdaptSize admission algorithm, we assume LRU as
the eviction algorithm throughout our paper. Our work is
complementary to recent ML-based caching proposals that
learn popularity of objects and/or determine the cache eviction
order, e.g., DeepCache [10] and PopCache [11].

Our Contributions. We formulate cache admission as a
model-free Reinforcement Learning (RL) problem and solve
it via direct policy search that combines Monte Carlo (MC)
sampling and stochastic optimization. Unlike prior works that
require complex object ordering and eviction strategies, our
goal is to create a simple practicable cache-admission front
end for an existing CDN server. This approach is easier
to implement in a production setting because such cache-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



admission front ends already exist in practice, e.g., Akamai’s
Bloom-filter implementation of SecondHit [4].

The proposed RL-Cache algorithm employs a feedforward
neural network that computes probabilities for the binary
decision of whether to admit or not to admit a requested object
into the cache. The training of the neural network on request
traces from CDN servers is computationally intensive and done
offline in the cloud, periodically and not in real time. When
a CDN server obtains the trained neural network, the server
uses the network to make admission decisions in real time,
by efficiently processing the object requests in batches with
small computation overhead, e.g., the per-request processing
time on the CPU (Central Processing Unit) and GPU (Graphics
Processing Unit) platforms in our evaluation is about 16 µs
and 4 µs respectively for batches of 4,096 requests. This
additional processing does not impose a significant demand
on the resources of CDN servers.

We develop a publicly available implementation of RL-
Cache, provide open access to it [12], and perform an evalu-
ation on real-world request traces from Akamai’s production
CDN. CDNs host traffic classes that have very different object-
size distributions and object-access patterns, requiring different
caching strategies [13]. We test our approach on three major
CDN-traffic classes: web, images, and videos. We also define
a notion of active bytes that characterizes the cache size
needed to achieve a high hit rate on a particular trace. For
the examined traffic classes and cache sizes, we show that
RL-Cache successfully learns to outperform or at least match
(e.g., when the cache is abundant for the needs of the trace)
the hit rate achieved by state-of-the-art algorithms.

The paper also reports extensive robustness and sensitivity
studies of RL-Cache. Specifically, we demonstrate that RL-
Cache is robust in the sense that it can be trained in one
location and executed, without a significant loss in the hit-rate
performance, on traces of the same or different traffic classes
in other locations of the same geographic region. After our
assessments of feature correlation and feature importance, we
evaluate RL-Cache on promising smaller subsets of its full
feature set and conclude that the full set of eight features is
critical for RL-Cache to maximize the hit-rate performance.
The analyses of sensitivity of RL-Cache to its hyperparameter
values justify the relevance of all hyperparameters and offer
interesting insights into the RL-Cache behavior.

To sum up, RL-Cache represents a pioneering ML-based
approach to improve cache hit rates by learning an admission
policy and is the first such scheme to be validated on real-
world CDN traces across multiple traffic classes. This article
extends its preliminary short version [14].

Roadmap. This paper has the following structure. Section II
provides background and discusses related work. Section III
presents RL-Cache, including its feature selection, training,
and implementation. Section IV empirically evaluates the
algorithm. Finally, Section V concludes the paper with a
summary of its contributions.

II. BACKGROUND AND RELATED WORK

CDN architecture. Figure 1 depicts a typical CDN archi-
tecture that deploys clusters of edge servers in data centers

Fig. 1: Typical architecture of a CDN.

around the world to host and serve content from thousands
of providers to billions of end users. Upon receiving a user’s
request for content, the CDN directs the request to its closest
edge server [4]. If this server caches the requested object, i.e.,
upon a cache hit, the server immediately sends the object to the
user. Otherwise, the edge server fetches the object from either
peer servers in the same cluster, or parent servers farther away,
or over a large-latency Wide Area Network (WAN) from the
content provider’s origin server as a last resort. To minimize
user-perceived latency, the CDN strives to serve the content
from the lowest possible layer in this hierarchy of origin,
parent, peer, and edge servers.

Every CDN server employs cache-admission and cache-
eviction algorithms to maintain its cache of requested objects.
The cache-admission algorithm determines whether to store
the requested object upon a cache miss. The cache-eviction
algorithm decides which objects to evict from the server when
the cache is full. Typically, each server manages its cache
independently. This paper proposes a new cache-admission
algorithm for this kind of independent cache management. Our
focus is on edge servers which constitute a vast majority of
servers in a real-world CDN. We believe that the proposed
approach is also extendable to peer and parent servers, as well
as to cross-layer cache management. Such extensions represent
a promising direction for future work.

Caching problem. Caching is related to the knapsack
problem [15] which makes optimal caching computationally
intractable, even in the offline setting where the entire request
sequence is known beforehand. CDN caching faces additional
online challenges due to uncertainty about future object re-
quests. Further, CDNs host traffic classes with diverse object-
size distributions and object-access patterns, making it hard for
any particular caching policy to work well for all classes [13].

Existing work in caching predominantly focuses on design
of eviction policies, e.g., LRU, SLRU, TLRU, S4LRU, GDSF,
ARC, and Cliffhanger (see Table 2 in [5]). Such eviction-
focused algorithms typically employ the basic admission pol-
icy of caching all requested objects. Recently, there has been
an increased interest in more sophisticated cache-admission
policies. SecondHit [4], an admission policy implemented by
Akamai, uses the access frequency of an object and admits the
object into the cache only upon a repeated request for the ob-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



ject within a fixed time interval. SecondHit employs a Bloom
filter as a front end of the cache to track objects that have
been requested before. Another frequency-based approach is
TinyLFU [16]. AdaptSize [5] is a size-based admission policy
that uses a Markov model to adjust a threshold for the size of
admitted objects. Unlike the previous work that considers one
or two features of requested objects, our RL-Cache algorithm
combines a broader set of eight features from the frequency,
size, and recency classes to make an admission decision.

Previous ML-based caching solutions, which also com-
monly focus on eviction policies, optimize for proxy metrics of
the hit rate. For example, DeepCache uses popularity predic-
tion to prefetch popular objects into the cache [10]. PopCache
caches objects with popularity-dependent probabilities [11].
FNN-based caching [17], NNPCR-2 [18], and KORA-2 [19]
also rely on popularity prediction. LFO [20] uses supervised
learning to make admission decisions by mapping object
features to optimal decisions learned offline.

RL-Cache differs from some of the above ML-based
schemes in optimizing for the hit rate directly, rather than
via a proxy metric such as object popularity. Our design
aligns perfectly with the RL paradigm because cache hits
constitute a natural form of RL rewards. RL-Cache combines
MC sampling with stochastic optimization to search directly
for a policy that maximizes the hit rate. Further, RL-Cache
focuses on cache admission, which is easier to implement as
a front end for an existing CDN cache. In addition, much
of the prior work uses less realistic traffic assumptions, such
as uniform object sizes or synthetic workloads that do not
accurately capture characteristics of real-world traffic classes
in a CDN. Finally, some prior schemes require functionality
that is hard to implement efficiently, such as creation of
fake requests for popular objects [10] or modification of the
eviction order based on object popularity [18].

III. RL-CACHE

We follow the RL paradigm because of its natural fit
with the cache-admission problem. In RL, an agent acts on
the current state to maximize the sum of discounted future
rewards that arise from the action [21]. The sequential decision
making in model-free RL is highly suitable for networking
problems in general because of the common necessity to make
a sequence of online decisions in an uncertain environment
where benefits from the made decisions become clearer only
as time progresses further [22], [23]. Additionally, cache
admission has special traits that make the problem more
amenable to RL. Whereas formulation of some networking
problems in terms of actions and rewards of the RL paradigm
is far from straightforward [24], [25], cache admission submits
itself to a natural RL formulation where admission decisions
represent RL actions, and cache hits constitute RL rewards. In
formulating and solving the problem, we keep close attention
to the imposed computation overhead so that the derived
solution is not only effective but also practical.

A. Feature Selection
Before formulating the cache-admission problem in RL

terms, we select features u to characterize objects in a re-

Feature Meaning

sj Size of object j in bytes

hj Temporal recency, time in seconds since the previous request
for object j

ηj Exponential smoothing of hj so far

dj Ordinal recency, the number of all requests for objects since
the previous request for object j

δj Exponential smoothing of dj so far

fj Frequency, the fraction of requests for object j among all
requests so far

fj/sj Ratio of the frequency to size for object j

fj · sj Product of the frequency and size for object j

TABLE I: Features in our model.

quest trace. Caching algorithms typically describe a requested
object with features belonging to the following three classes:
(1) object size, (2) request recency, and (3) request frequency.
The algorithms use these feature classes in either isolation
or combination. For example, AdaptSize considers only the
object size, LRU relies on recency, SecondHit is based on
frequency, and GDSF combines the size and frequency. The
strength of our approach is in simultaneously considering a
broad set of eight features from these three classes, as defined
in Table I. Compared to the object size, request recency is
a vaguer notion amenable to diverse definitions. For instance,
when exactly the same temporal gap separates two consecutive
requests for object j, the number of all requests for objects
between the two requests for object j can be very different
depending on whether the other object requests arrive in the
trace sparsely or in a burst. Besides, recency is different if
defined with respect to the most recent request for object j
as opposed to a series of such recent requests. Hence, we
consider four recency features: temporal recency hj , ordinal
recency dj , and their exponentially smoothed variants ηj
and δj . Furthermore, a combination of primitive features might
result in learning a dramatically different algorithmic behavior.
Thus, we mix size sj and request frequency fj to also consider
combined features fj/sj and fj · sj . Later in the paper,
we thoroughly evaluate the sensitivity of RL-Cache to the
selection of features.

B. RL Problem Formulation

In our RL formulation of the cache-admission problem, a
state is a vector of object features. An action on the state refers
to a decision whether to admit the requested object into the
cache. To tremendously reduce the computation overhead, the
state excludes cache occupancy because this allows RL-Cache
to precompute the action probabilities for states and thereby
avoid repeated computation of the probabilities for each run-
time cache occupancy during the model training. Immediate
reward ri for an action signals whether the next request is a
cache hit or miss. Then, we express the return as:

R =
∞∑
i=1

γiri (1)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



where γ denotes the discount factor of future rewards. The
objective is to design an RL algorithm so that its policy
function of states and actions maximizes the expected return,
which directly corresponds to maximizing the expected hit rate
of the cache.

C. Narrowing Down the RL Approach

One can roughly classify model-free RL algorithms into TD
(Temporal Difference), MC (Monte Carlo), and DPS (Direct
Policy Search) types [26]. To narrow down our approach
within the RL paradigm, we gear the design towards specifics
of the formulated cache-admission problem. Because RL states
are just the features of requested objects, an action on the
current state has an extremely weak correlation with the
immediate reward in the next state: the action of admitting the
currently requested object triggers an immediate hit only when
the next request is for the same object, which is extremely
rare in real CDN request traces. Q-learning [27], and other
TD algorithms that rely on bootstraping [21], might estimate
action values too imprecisely under such noisy reward signals.
Indeed, our experimentation with Q-learning reveals no signif-
icant improvements in the hit-rate performance compared to
the state-of-art non-ML algorithms.

A potential direction for tackling the challenge of extremely
noisy rewards is to adopt a different kind of rewards than cache
hits. However, it is unclear how to design more informative
rewards. The various rewards that we can think of require
significant computation time, e.g., logarithmic in the number
of cached objects. Due to the excessive computation overhead,
we dismiss this direction and keep using cache hits as rewards.

An alternative is an MC learning algorithm that updates
an action value based on longer sequences of state-action
pairs. Such an algorithm observes the sequence-long returns
of all sampled sequences and uses the average return for
updating the action value. The drawbacks of MC learning
algorithms include large overhead of computing the returns
over long sequences to update only one state-action pair as
well as vulnerability to high variance in the returns. Similarly
to Q-learning, the MC learning algorithms in our experiments
perform weakly.

Hence, we turn to and follow the DPS approach. Our RL-
Cache algorithm also simulates long sequences of state-actions
and records their sequence-long returns. Instead of averaging
the returns to update one state-action pair as in the MC
learning algorithms, RL-Cache utilizes the individual returns
to segregate a subset of sequences with high returns and then
leverages this subset to directly search for a better policy in the
policy space. We represent a policy as a feedforward neural
network that computes admission probability A(u,w) ∈ [0, 1]
as a function of features u of the requested object (which
capture the state) and weights w of the neural network. Our
training algorithm employs the neural network to simulate suf-
ficiently many sequences of admission decisions (i.e., actions)
and then adjusts the neural-network weights to learn a new
policy on a high-performance subset of these sequences.

Note that RL-Cache is a DPS algorithm where MC sampling
serves a different role than in MC learning algorithms. The

latter consider all generated samples to update the state-action
pair without bias. On the other hand, RL-Cache deliberately
considers only high-return samples to steer its direct search
towards a policy that reproduces actions leading to maximal
rather than average returns. Later in the paper, we quantify
the performance benefits of this intentional bias. Within the
DPS paradigm, RL-Cache aligns closely with the CE (Cross-
Entropy) method which also combines MC sampling and
stochastic optimization [28].

D. Neural-Network Architecture

The network architecture in our solution is a fully connected
ANN (Artificial Neural Network) with ELU (Exponential
Linear Unit) activation functions in each of its five hidden
layers. We select ELU over ReLu (Rectified Linear Unit) and
Leaky ReLu to resolve the zero-gradient problem of ReLu
on negative inputs without introducing the potential result
inconsistency under Leaky ReLu [29]. With n denoting the
number of neurons in the input layer, the l-th hidden layer
contains 5(6 − l)n neurons, i.e., the hidden layers narrow
linearly along the forward pass. To avoid overfitting, we apply
L2 regularization as it can provide better generalization in
RL than with dropout or batch normalization [30]. While the
eight features selected in Subsection III-A are continuous, we
quantize their value spaces into ten or less bins and use each
bin value as an ANN input. For each feature, additional inputs
similarly discretize its historical version that exponentially
weights the feature value over the history of object requests (as
we noticed later, benefits from this extension were relatively
low, and it could be removed to make the network smaller).
Thus, n in our network is at most 8 · 10 · 2 = 160 inputs. The
output layer uses the softmax activation function and contains
two neurons that produce probabilities for the two respective
outcomes of admitting or not admitting the requested object
into the cache. Based on limited experimentation, our choice
of the above ANN architecture strives to support effective
learning on moderate computing resources, rather than to
identify an optimal network design.

E. Training Algorithm

The objective of the training algorithm is to adjust
weights w of the neural network so that the admission prob-
abilities computed for object requests by the network realize
a cache-admission policy with the maximum hit rate. Even
though we envision training RL-Cache in the cloud, periodi-
cally and not in real time, the computation overhead remains
a key consideration and guides our design choices. RL-Cache
learns at the granularity of multiple consecutive requests,
rather than a single request, simulates many sequences of
admission decisions for every considered sequence of requests,
and evaluates each of these admission-decision sequences by
computing its long-term hit rate.

More specifically, we train the network on a window of K
consecutive requests and slide the window along the training
trace by K requests at a time. As the window slides from
the beginning to the end of the training trace, the algorithm
keeps updating weights w. To compute the return for any

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



1

Training Algorithm

RL-Cache @ Ericsson KISS, Budapest, Hungary

. . .
Window of K requests

Trace

p samples with 

highest hit rates

not converged

m samples 

of admission 

decisions for 

the window 

Admission decisions 

with discounted rewards

for L extra requests 

Sampling

. . .

Learning

Weights w

5 September 2019

• Sliding to the next window

• Refilling the cache every q windows

converged

Selection

Fig. 2: Training algorithm of RL-Cache.

sample sequence of K admission decisions generated for a
K-request window, we also simulate admission decisions for
the L requests that immediately follow this window. Thus, the
return computation for the sample of K admission decisions
considers an extended sequence of K+L admission decisions.
Depending on whether the next request after the i-th decision
in the sequence is a cache hit or miss, we express immediate
reward ri for this decision as:

ri =

{
1

K+L for a cache hit,
0 for a cache miss.

(2)

The first K immediate rewards in the extended sequence
contribute to the return without a discount, i.e., one can view γ
for these “native” immediate rewards as equal to 1. The return
contributions by the last L rewards are discounted with factor
γ between 0 and 1, which is common for future rewards in RL.
We consider any rewards further in the future as negligible.
With this, the return for the K-decision sample becomes:

R =

K∑
i=1

1hits(reward i) +
K+L∑

i=K+1

γi−K1hits(reward i)

K + L
(3)

where 1 is an indicator function. This return captures the long-
term hit rate of the admission-decision sample. We refer to
the γL factor of the last of these K +L contributing rewards
as hyperparameter c and derive γ from c. The training algo-
rithm uses the extra L admission decisions in each extended
admission-decision sequence solely to compute return R of
the “native” K-decision sample.

Figure 2 describes how the training algorithm operates in
each position of the K-request window. The operation consists
in iterating over three steps. The first step uses MC sampling
to generate m admission-decision sequences, with each sample
containing K admission decisions. Then, the second step of
the iteration selects the p-th percentile of these K-decision
samples with the highest returns (computed over the extended
sequences of K + L admission decisions) to steer the policy
search towards an optimal policy with the maximum hit rate.
The final third step utilizes the selected K-decision samples

for learning the new policy via the backpropagation algorithm
that uses binary cross-entropy loss as the loss function [31].
The three-step iterations continue until the neural-network
weights converge. Upon the convergence within a threshold
(or when the number of iterations reaches an upper bound),
the algorithm slides the window to the next K requests in
the training trace. In the expected case when L exceeds 0,
the extended admission-decision sequences of consecutive
windows overlap, thereby connecting the consecutive learning
episodes. Because the neural-network weights change as the
window slides along the training trace, the cumulative effect of
the weight changes might undermine the training effectiveness.
Thus, the training algorithm simulates refilling the cache after
every q windows under the current weights for all the requests
from the beginning of the trace.

The presented training algorithm gears its design choices
towards specifics of the cache-admission problem. Regardless
of these adjustments, RL-Cache is essentially a CE algorithm
and has the same theoretical properties as the general CE
method [28]. Also despite the various design optimizations, the
training algorithm is computationally intensive. We envision
the training to be periodically performed in the cloud, with an
updated version of the trained network provided to the CDN
server at the end of each period.

F. Real-Time Operation

Whereas the training of RL-Cache is computationally inten-
sive, the usage of RL-Cache to make online cache-admission
decisions is simple and can be done efficiently in real time
without a significant demand on the resources in the CDN
server. Upon receiving a request for an object, the CDN server
applies the trained neural network to the object features to
compute the admission probability for the request and then
rounds the computed probability to 1 or 0 to decide whether
to admit or not to admit the requested object into the cache.

G. Implementation

We implement RL-Cache using the TensorFlow library [32]
without requiring any extensions. Our implementation is pub-
licly available with open access at its GitHub repository [12].
The implementation of RL-Cache in the cache server main-
tains a database with feature statistics, which are needed to
compute the frequency and recency metrics, and applies the
most recently obtained neural network to arriving requests.
Upon receiving an object request, the cache computes the
features of the object, updates the feature-statistics database,
and uses the neural network to make an admission decision
for the object. The usage of the neural network contributes the
most to the processing overhead imposed by RL-Cache on the
cache.

To keep the neural-net processing overhead low, our RL-
Cache implementation leverages pipelining and batching. RL-
Cache is invoked only for those requests that result in a cache
miss and trigger fetching of the missed object from its origin
over the WAN, with typical fetching latency above 100 ms.
Further, RL-Cache makes admission decisions asynchronously
with serving the requested object to the user, since the server

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Request trace US1-∗ image video web

Requests (106) 85.48 49.85 144.87

Unique objects (106) 33.20 7.13 11.11

Unique bytes (TB) 0.64 2.35 2.56

Traffic volume (Gbps) 0.06 0.21 1.69

TABLE II: Properties of the US1-image,
US1-video, and US1-web request traces. 0 20 40 60 80 100

Percentage of objects (%)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s (
%

)

US1-image
US1-video
US1-web

Fig. 3: Object-popularity distribution
for US1-image, US1-video, US1-web.

102 104 106 108

Object size (B)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s (
%

)

US1-image
US1-video
US1-web

Fig. 4: Object-size distribution for US1-
image, US1-video, and US1-web.

caches the object already after delivering it to the user.
Hence, RL-Cache can be run in a batch mode where the
cache accumulates arriving requests into a batch and sends
them jointly, as one batch, for the neural-net processing. The
batch mode exploits architectural properties of the multi-core
processors in modern CDN servers. The parallel processing
of the batch requests, further enhanced by potential sharing
of memory banks among the processor cores, enables the
modern CDN servers to adopt RL-Cache without reducing
their request-processing rates.

IV. EMPIRICAL EVALUATION

To evaluate RL-Cache, we start with three traces collected
over a period of four days from a US-based edge server
in Akamai’s production network. Table II characterizes these
US1-image, US1-video, and US1-web request traces that rep-
resent the image, video, and web traffic classes respectively.

We demonstrate the diversity of the considered traffic
classes by plotting the object-popularity and object-size distri-
butions for each of the traces. For US1-video and US1-web,
Figure 3 shows that 80% of the requests are for less than 10%
of the objects, indicating that a relatively small subset of such
objects needs to be cached to achieve a high hit rate. On the
other hand, 80% of the requests in the US1-image trace are for
nearly 60% of the objects, suggesting that a larger fraction of
objects belonging to the image traffic class should be cached
to provide the high hit rate. Figure 4 reveals that objects of the
examined traffic classes can vary in size by up to two orders
of decimal magnitude. The extreme variability in the object-
popularity and object-size distributions among traffic classes
makes cache management challenging in production settings.
We later show that RL-Cache is able to adapt to the varying
popularity and size characteristics to achieve good hit rates.

Evaluation Methodology. Sizing the cache to achieve high
hit-rate performance on a trace of object requests depends
on properties of the specific trace. To characterize these
properties, we introduce a notion of active bytes. First, we
view an object as active at time t of a trace if this t lies,
inclusively, between the first and last requests for the object
in the trace. Then, we define active bytes as the total size of the
objects active at time t. Active bytes are relevant because they
capture the cache size sufficient to preclude any hot misses
(i.e., misses upon the second and all subsequent requests for
each object) by the offline algorithm that admits all requested

							0																1															2																3

Fig. 5: Hit-rate dynamics on US1-image with the 16-GB cache.

objects and evicts every object upon its last request in the
trace. The above policy of admitting all objects is common
in eviction-focused caching algorithms, and we refer to this
admission policy as AdmitAll. For an infinitely large cache,
AdmitAll is an optimal admission policy.

Our evaluation compares RL-Cache with AdmitAll,
frequency-based SecondHit, and adaptive size-based Adapt-
Size. Figure 5 illustrates hit-rate dynamics on the US1-image
trace with the cache sized to 16 GB, where the hit rate is
computed over 1-hour intervals. RL-Cache consistently out-
performs the existing counterparts under the observed diurnal
patterns of the image requests.

Guided by Figures 6, 7, and 8 that plot the active bytes for
the US1-image, US1-video, and US1-web traces respectively,
we choose to test the cache-admission algorithms on caches
sized to 2 GB, 16 GB, and 128 GB. Because Figures 6 and 7
indicate that the active bytes remain below 128 GB throughout
the US1-image and US1-video traces, we hypothesize that the
128-GB cache is plentiful for the needs of these two traces, and
the basic AdmitAll admission policy should be nearly optimal
on the 128-GB cache even when combined with a reasonable
online eviction policy such as LRU. Furthermore, since the
active bytes in Figures 6 and 7 exceed both 2 GB and 16 GB
during most of these two traces (except the expected sharp rise
and drop in the beginning and end of each trace respectively),
our hypothesis is that a more sophisticated admission policy
should be able to outperform AdmitAll in regard to the hit
rates on the 2-GB and 16-GB caches. On the other hand,
whereas Figure 8 shows that the active bytes surpass 128 GB
during most of the US1-web trace, we expect AdmitAll to
be suboptimal for this trace on the 128-GB, 16-GB, and 2-GB

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



				0												1												2											3												4

Fig. 6: Active bytes for US1-image.

				0												1												2											3												4

Fig. 7: Active bytes for US1-video.

				0												1												2											3												4

Fig. 8: Active bytes for US1-web.

2 16 128
Cache size (GB)

0

10

20

30

40

50

Ca
ch

e 
hi

t r
at

e 
(%

)

AdmitAll
SecondHit
AdaptSize
RL-Cache

Fig. 9: Average hit rate on US1-image.

2 16 128
Cache size (GB)

0

20

40

60
Ca

ch
e 

hi
t r

at
e 

(%
)

AdmitAll
SecondHit
AdaptSize
RL-Cache

Fig. 10: Average hit rate on US1-video.

2 16 128
Cache size (GB)

0

20

40

60

80

Ca
ch

e 
hi

t r
at

e 
(%

)

AdmitAll
SecondHit
AdaptSize
RL-Cache

Fig. 11: Average hit rate on US1-web.

caches, creating the opportunity for a more intelligent policy to
achieve higher hit rates. Thus, the choice of the 2-GB, 16-GB,
and 128-GB cache sizes enables us to examine a wide range
of achievable hit-rate improvements. We also note that these
three sizes are typical for in-memory hot-object caches [5] and
Solid-State Drive (SSD) caches in CDN servers.

We do both training and testing of RL-Cache in conjunction
with LRU as the eviction policy, because most production
systems employ LRU variants. The training of RL-Cache is
done on caches of the same three sizes as for the testing:
2 GB, 16 GB, and 128 GB. The cache size used in the
training can be thought of as an aggressiveness knob for an
adaptive admission policy such as RL-Cache. Smaller cache
sizes force the admission policy to admit objects with a lower
probability, while the opposite happens with larger cache sizes.
In the initial set of our experiments, we train and test on non-
overlapping portions of a particular trace. Specifically, we train
RL-Cache on the first ten million requests of each trace and
test the trained model on the rest of the trace. When testing
RL-Cache, we choose the model that gives the highest hit rate
for every cache size.

Hyperparameter Settings. The evaluation uses the follow-
ing default values of the RL-Cache hyperparameters: the cache
is refilled every q = 4 windows, m = 250 decision samples
are generated for each window, top p = 10% of the samples
are selected for the learning step, each sample covers K = 50K
requests, and extra L = 150K requests are used to compute
the hit rate for each decision sample with contribution factor
c = 1% for the last extra request. We select these default
settings based on some theoretical considerations and limited
experimental checks. Later in this section, we extensively
study the sensitivity of RL-Cache to hyperparameter values.

A. Average Hit Rate

We evaluate the average hit rate of the algorithms over
the entire testing portion of each trace. Recall that based
on our earlier active-byte characterizations for the caching
needs in Figures 6 and 7, we expect the 128-GB cache to
be plentiful and AdmitAll to be nearly optimal for the US1-
image and US1-video traces. For these two traces on the 128-
GB cache, Figures 9 and 10 demonstrate that (a) AdmitAll
indeed performs strongly, (b) SecondHit and AdaptSize coun-
terproductively reject objects and thereby yield lower hit rates,
and (c) RL-Cache successfully learns the near-optimality of
admitting all objects and matches the AdmitAll performance
when the cache is abundant.

Upon reducing the cache size to 16 GB, and further to 2 GB,
admittance of all objects becomes increasingly suboptimal,
again as predicted by our active-byte characterizations. With
these smaller cache sizes, Figures 9 and 10 show that AdmitAll
provides lower hit rates than AdaptSize. On the other hand,
RL-Cache learns a different selective admission strategy and
consistently outperforms AdmitAll, SecondHit, and AdaptSize
on the smaller caches. In particular for the US1-image trace,
Figure 9 shows that RL-Cache outperforms AdmitAll and
AdaptSize by 9.7% and 4.5% respectively on the 2-GB cache,
and by 7.5% and 3.4% respectively on the 16-GB cache.
This corroborates the ability of RL-Cache to learn more
effectively by using a more diverse set of object features,
including recency and frequency characteristics, as opposed
to AdaptSize which considers only object sizes.

Based on our active-byte characterization of the US1-
web trace in Figure 8, even the 128-GB cache is expected
to be insufficiently large to make AdmitAll a near-optimal
admission policy. Indeed, Figure 11 confirms that RL-Cache

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Request trace US2-web EU-video

Requests (106) 436.69 69.06

Unique objects (106) 56.42 2.52

Unique bytes (TB) 8.90 24.16

Traffic volume (Gbps) 3.07 3.68

TABLE III: Properties of the US2-web
and EU-video request traces. 0 20 40 60 80 100

Percentage of objects (%)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s (
%

)

US2-web
EU-video

Fig. 12: Object-popularity distribution
for the US2-web and EU-video traces.

101 103 105 107 109

Object size (B)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
eq

ue
st

s (
%

)

US2-web
EU-video

Fig. 13: Object-size distribution for the
US2-web and EU-video traces.

				0							3							6								9						12					15					18

Fig. 14: Active bytes for EU-video.

2 16 128
Cache size (GB)

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

) AdmitAll
SecondHit
AdaptSize
RL-Cache

Fig. 15: Average hit rate on EU-video.

2 16 128
Cache size (GB)

0

20

40

60

80

Ca
ch

e 
hi

t r
at

e 
(%

)

US1-web_US1-web
US2-web_US1-web
US1-video_US1-web

Fig. 16: Robustness within a region.

2 16 128
Cache size (GB)

0

20

40

60

80

Ca
ch

e 
hi

t r
at

e 
(%

)

US1-web_US1-web
EU-video_US1-web
US1-video_US1-video
EU-video_US1-video

2 16 128
Cache size (GB)

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

) EU-video_EU-video
US1-video_EU-video
US1-web_EU-video

Fig. 17: Robustness of RL-Cache across geographic regions: (left) testing in the
US1 location and (right) testing in the EU location.

1 8 16 64 256 1K 4K
Batch size (requests)

100

101

102

103

Ti
m

e 
pe

r r
eq

ue
st

 (
s) CPU

GPU

Fig. 18: Per-request neural-net processing of
RL-Cache.

consistently outperforms AdmitAll for all three examined
cache sizes: from 4.5% with the 128-GB cache to nearly 20%
for the 2-GB cache. Figure 11 also shows that RL-Cache
consistently outperforms SecondHit and performs at least as
well as AdaptSize.

Overall, the above results for the three traces show that RL-
Cache performs better than, or at least as well as, the state-of-
the-art admission algorithms. Hence, RL-Cache is excellently
suited for production settings where request patterns and cache
partitions for traffic classes vary.

B. Robustness of RL-Cache
To assess the robustness of RL-Cache, we consider addi-

tional US2-web and EU-video traces characterized in Table III.
Whereas US2-web is a four-day web trace from a different US-
based data center than for US1-web, EU-video is an eighteen-
day video trace from Ireland. Figures 12 and 13 depict respec-
tively the object-popularity and object-size distributions for

these two additional traces. In particular, Figure 13 reveals that
EU-video contains mostly requests for 10-MB video chunks.

EU-video diversifies our study in regard to not only its
geography and object-size distribution but also the cache size
needed to achieve a good performance on a trace. Figure 14
shows that the active bytes during EU-video remain signifi-
cantly above 128 GB, implying that the cache has to be much
larger to achieve a high hit rate. Figure 15 corroborates this:
the examined algorithms support hit rates of around 20% on
the 128-GB cache, with RL-Cache outperforming the second-
best AdaptSize algorithm by 6%. For the needs of EU-video,
the 2-GB and 16-GB caches are too tiny as they support
meaningless hit rates of just few percents.

Now, we examine the sensitivity of RL-Cache to being
trained in a different geographic location and on a different
traffic class. When labeling the plots for these experiments,
we use format A B where A and B refer to the training
and testing traces respectively. Regardless of whether we train

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



sj fj fj · sj fj/sj hj ηj dj δj

sj 1.00 -0.02 0.07 -0.20 0.03 0.01 0.02 0.00

fj -0.02 1.00 1.00 0.66 0.19 0.30 0.34 0.41

fj · sj 0.07 1.00 1.00 0.64 0.19 0.30 0.35 0.41

fj/sj -0.20 0.66 0.64 1.00 -0.14 -0.10 -0.04 0.00

hj 0.03 0.19 0.19 -0.14 1.00 0.90 0.97 0.87

ηj 0.01 0.30 0.30 -0.10 0.90 1.00 0.93 0.98

dj 0.02 0.34 0.35 -0.04 0.97 0.93 1.00 0.95

δj 0.00 0.41 0.41 0.00 0.87 0.98 0.95 1.00

A) EU-video trace

sj fj · sj fj fj/sj hj ηj dj δj

sj 1.00 0.6 0.08 -0.4 0.05 0.05 0.06 0.06

fj · sj 0.6 1.00 0.84 0.47 0.35 0.42 0.47 0.50

fj 0.08 0.84 1.00 0.86 0.41 0.49 0.55 0.58

fj/sj -0.4 0.47 0.86 1.00 0.28 0.35 0.40 0.43

hj 0.05 0.35 0.41 0.28 1.00 0.95 0.97 0.94

ηj 0.05 0.42 0.49 0.35 0.95 1.00 0.97 0.98

dj 0.06 0.47 0.55 0.40 0.97 0.97 1.00 0.98

δj 0.06 0.50 0.58 0.43 0.94 0.98 0.98 1.00

B) US1-image trace

TABLE IV: Pearson correlation coefficients for all pairs of the eight features on the first 20M requests of two traces.

RL-Cache on US1-web, US2-web, or US1-video, Figure 16
shows that the hit rate on US1-web remains about the same.
Hence, we can train RL-Cache in one location and run the
algorithm on traces of the same or different traffic classes in
other locations of the same geographic region.

We also consider scenarios where the training is done on
a different continent. Figure 17 reveals that the hit rate on
US1-web degrades significantly when RL-Cache is trained on
EU-video rather than US1-web. The degradation is smaller
when the traffic class is kept the same, as shown for the hit
rate on US1-video when we train RL-Cache on EU-video
rather than US1-video. Swapping the training and testing
locations, Figure 17 also reports substantially lower hit rates on
EU-video when RL-Cache is trained on US1-video or US1-
web rather than EU-video. While the robustness across the
continents is weak, the CDN can improve the scalability of
its operation by training RL-Cache on a subset of the servers
in the same geographic region, rather than across geographic
regions.

C. Processing Overhead of RL-Cache

This section evaluates how effectively our RL-Cache im-
plementation leverages modern multi-core CPUs and GPUs
to keep the per-request neural-net processing overhead low.
Figure 18 depicts the impact of the batch mode on the
neural-net processing overhead. As the batch size increases,
we use the same number of cores as the batch size until
utilizing all the cores. Whereas the separate processing of
each request takes 620 µs and 510 µs on an AMD Ryzen
7 1700X CPU (which has 16 cores with 64 threads) and
GeForce GTX 1080 Ti GPU (with 3584 cores) respectively, the
corresponding per-request overhead with 1024-request batches
falls to 64 µs and 4 µs on the CPU and GPU. Such low per-
request neural-net overhead already empowers modern cache
servers to sustain their current rates of request processing.
When batches are sized to 4096 requests, the per-request
neural-net processing time becomes 16 µs and 4 µs for the
CPU and GPU respectively.

D. Sensitivity to Features

In the above evaluation, RL-Cache uses the full set of its
eight features presented in Table I. To understand how the

selection of features affects the hit-rate improvements provided
by RL-Cache, this section first examines correlation between
the features, then quantifies feature importance, and finally
assesses the RL-Cache performance on smaller sets of features.

1) Feature Correlation: Table IV-A reports Pearson corre-
lation coefficients for all pairs of the eight features on the first
20M requests of the EU-video trace. Expectedly, frequency fj
has high positive correlation with features fj · sj and fj/sj
that combine the frequency with size sj of object j. Also as
expected, each pair formed among four recency metrics hj ,
ηj , dj , and δj exhibits strong positive correlation.

Table IV-B similarly evaluates Pearson correlation coeffi-
cients for the US1-image trace. Frequency fj is strongly
correlated with either fj · sj or fj/sj . On the other hand,
correlation between fj · sj and fj/sj is weaker than in the
EU-video trace. Besides, size sj is strongly correlated with
fj · sj whereas such correlation does not exist in EU-video.
To understand the latter result, we compare Figure 4 with
Figure 13 and observe that while the object sizes in US1-image
differ by two orders of decimal magnitude, almost all objects
in EU-video have the same size. Hence, it is not surprising that
fj · sj and sj do not exhibit strong correlation in EU-video.

The above feature-correlation studies prompt a hypothesis
that RL-Cache might be able to sustain its performance when
operating with a reduced set of three features representing
the size, frequency, and recency classes. Later in this section,
we evaluate this hypothesis. Specifically, we consider a basic
feature set that consists of size sj , frequency fj , and temporal
recency hj .

2) Feature Importance: We now assess importance of fea-
tures for admission decisions made by RL-Cache. Again, we
consider the EU-video and US1-image traces. The weights of
the neural network unfortunately do not shed light on feature
importance. To estimate the impact of each feature, we em-
ploy an algorithm that natively calculates feature importance.
While decision trees constitute a reasonable choice for such
estimation, their generalization ability might be insufficient for
reproducing the output of the neural network, and we instead
use random forests [33] as a proxy for the model. Because
random forests depend on the initial seed, each run of the
algorithm might produce different feature-importance values.
To tackle this issue, we run random forests multiple times with
different initial seeds on different portions of the trace.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0

5

10

15

20

25
Ca

ch
e 

hi
t r

at
e 

(%
)

Basic features
Top-3 features
Top-6  features
All features

Fig. 19: Average hit rate on EU-video.

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)

Basic features
Top-3 features
Top-6 features
All features

Fig. 20: Accuracy on EU-video.
0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

)

Basic features
Top-3 features
Top-6  features
All features

Fig. 21: Average hit rate on US1-image.

Feature Importance (%)

ηj 15.6

dj 12.9

fj 12.6

hj 12.4

δj 12.1

sj 11.7

fj · sj 11.5

fj/sj 11.2

A) EU-video trace

Feature Importance (%)

fj 20.9

fj · sj 20.5

fj/sj 19.7

sj 17.5

hj 10.0

dj 7.8

ηj 3.1

δj 0.5

B) US1-image trace

TABLE V: Usage of random forests to study feature impor-
tance on the first 1M requests of two traces.

In this classification usage of random forests, the algorithm
offers a natively interpretable definition for the importance
value of a feature as the average mutual information between
the feature and the target. Although the importance values
do not reveal which features should be selected for a high-
performing feature set, these values allow us to compare
features in regard to significance of their impact on made
decisions.

Table V-A presents the average feature-importance values
from multiple runs of random forests on the first 1M requests
of the EU-video trace. For ease of interpretation, we scale the
feature-importance values to add up to 100%. Because the full
feature set contains eight features, the expected importance
value for each feature would be 12.5% if all eight features
were equally important. The actual feature-importance values
for the eight features in Table V-A vary between 11.2% and
15.6%, suggesting that each of the features is fairly important.
Table V-A also indicates that recency features ηj and dj are
more important for successful operation of RL-Cache on the
EU-video trace than the features that involve frequency and/or
size. The lowest importance of the size-based features is again
not surprising because almost all objects in EU-video are of
the same size.

Table V-B reports feature importance for RL-Cache on the
US1-image trace. In stark contrast to the results for EU-video,
the frequency-based features are the most important, and the
recency-based features are the least important, for successful
operation of RL-Cache. Also, the object size becomes an

important feature with the US1-image trace. The unified
perspective from Tables V-A and V-B justifies our design
choice to consider a feature set that includes features from
all three feature classes: frequency, recency, and size.

3) Reducing the Feature Set: While our feature set contains
eight features, we explore the possibility of making the feature
set smaller without degrading the RL-Cache performance.
Because evaluating each subset of the full feature set is com-
putationally infeasible, we leverage insights from the above
feature-correlation and feature-importance studies to select
and evaluate only some promising subsets. Once again, we
assess how RL-Cache performs on the EU-video and US1-
image traces. For either of the two traces, the assessment
considers three reduced sets: (1) basic set that contains size sj ,
frequency fj , and temporal recency hj , (2) top-3 set and,
(3) top-6 set. The top-3 and top-6 subsets include features
according to their rankings in the feature-importance studies,
as reported in Tables V-A and V-B for EU-video and US1-
image respectively. For each trace, its top-6 subset subsumes
the basic feature set.

When evaluating sensitivity of the RL-Cache performance
to the feature set, we track not only the hit-rate performance
but also the training accuracy achieved with the feature set. A
different feature set is likely to require a different effort to train
the neural network with the same accuracy. We characterize
the training effort via a notion of training span defined as
the number of requests used to train the neural network. As
described in Section III-E and Figure 2, the training algorithm
of RL-Cache is iterative. For each window, the algorithm
goes through some number of three-step iterations before
the neural-network weights converge. Upon the convergence,
the training algorithm slides to the next window. After each
iteration for the current window of K requests, we apply the
updated network to this window to predict the respective K ad-
mission decisions and compute the per-iteration accuracy of
the prediction with respect to the admission-decision samples
used at the learning step of the iteration. Because the number
of iterations might vary from one window to another, we define
training accuracy for a window as the average per-iteration
accuracy over the same fixed number of the last iterations
for this window. Because time spent per iteration, as well as
the number of iterations per window, might be different in
different settings, the same training span does not imply the
same training time.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0

5

10

15

20

25
Ca

ch
e 

hi
t r

at
e 

(%
)

K = 5K
K = 25K
K = 50K
K = 100K
K = 200K

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)

K=5K
K=25K
K=50K

K=100K
K=200K

Fig. 22: Sensitivity to K, the size of a
decision sample.

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

)

L = 0
L = 100K
L = 150K
L = 200K
L = 500K

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)
L-0
L=100K
L=150K
L=200K
L=500K

Fig. 23: Sensitivity to L, the number of
extra requests per sample.

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

)

c = 0%
c = 0.1%
c = 1%
c = 10%
c = 100%

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)

c=0%
c=0.1%
c=1%
c=10%
c=100%

Fig. 24: Sensitivity to c, the contribution
factor for the last extra request.

Figure 19 depicts sensitivity of the RL-Cache hit-rate per-
formance on the EU-video trace to the feature set. The basic,
top-3, and top-6 feature subsets support substantially lower
performance than with the full set. Figure 20 shows that similar
training spans are needed to achieve high training accuracy for
all four examined sets of features. Thus, the full feature set
provides the best performance without imposing a significantly
higher training effort.

On the US1-image trace, sensitivity of the hit-rate per-
formance and training accuracy to the feature set remains
qualitatively the same. Compared to Figure 19, Figure 21 for
US1-image exposes an interesting difference that RL-Cache
performs better with the basic feature set than top-3 set. The
result illustrates that when the size of the feature set is fixed,
forming the set from the most important features does not
assure the best performance.

Overall, the above sensitivity studies validate our design
choice of using the broad set of eight features. On different
traces, different subsets of the features become important
for RL-Cache to sustain its high hit-rate performance. For
each trace, RL-Cache automatically discerns the important
features and focuses on them to maximize the performance.
Furthermore, the training effort for the full feature set is
comparable to those for reduced feature sets.

E. Sensitivity to Hyperparameter Values

After using a variety of real-world traces to show that RL-
Cache outperforms existing cache admission algorithms in
the default settings of its hyperparameters, we now evaluate
the sensitivity of the RL-Cache performance to the choice of
hyperparameter values. In particular, we examine how much
the RL-Cache hit rate changes when each of its six hyper-

parameters departs from its default value identified below:
(1) K = 50K requests in a decision sample, (2) L = 150K
extra subsequent requests for computing the hit rate per
sample, (3) contribution factor c = 1% for the last extra
request, (4) m = 250 generated decision samples, (5) p = 10%
of the highest hit-rate samples selected for learning, and
(6) q = 4 subsequent windows after which the cache is refilled
according to the latest learned strategy. While changing one
hyperparameter, we keep the other hyperparameters fixed at
their default values. By analyzing the sensitivity, we explore
both whether the default hyperparameter values constitute a
reasonable configuration and whether the RL-Cache design
really needs these hyperparameters. We experiment with the
EU-video trace on the 128-GB cache and use bars with striped
lines to depict the default hyperparameter settings.

(K) Decision-sample size. We depart from the default value
of K = 50K requests to consider two smaller values of 5K
and 25K requests, and two larger values of 100K and 200K
requests. Figure 22 shows that whereas larger values of K
consistently require longer training spans to achieve the same
accuracy level, the intermediate default setting of K = 50K
requests yields the highest hit rate. In particular, while using
the smallest sample size of K = 5K requests enables accurate
training of the neural network on the smallest number of
requests, e.g., reaching the 95% accuracy on the training span
of 800K requests, this desirable property does not translate
into the best hit-rate performance.

The plots suggest that decision samples should be suffi-
ciently large for the trained network to make near-optimal
admission decisions in terms of the hit rate. On the other hand,
even the long training span of 20M requests is too short for the
larger K values of 100K and 200K requests to surpass even the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0

5

10

15

20

25
Ca

ch
e 

hi
t r

at
e 

(%
)

m = 10
m = 100
m = 250
m = 500
m = 1000

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)

m=10
m=100
m=250
m=500
m=1000

Fig. 25: Sensitivity to m, the number of
generated decision samples.

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

)

p = 1%
p = 5%
p = 10%
p = 20%
p = 50%

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)
p=1%
p=5%
p=10%
p=20%
p=50%

Fig. 26: Sensitivity to p, the percentage
of the samples selected for learning.

0

5

10

15

20

25

Ca
ch

e 
hi

t r
at

e 
(%

)

q = 1
q = 2
q = 4
q = 10
q = 100

400K 4M 40M
Training span (requests)

60

70

80

90

100

Tr
ai

ni
ng

 a
cc

ur
ac

y 
(%

)

q=1
q=2
q=4
q=10
q=100

Fig. 27: Sensitivity to q, the number of
subsequent windows for the cache refill.

90% accuracy, and the insufficient accuracy prevents the neural
network from maximizing the hit rate. Hence, the choice of
the decision-sample size poses a trade-off between the training
effort and hit rate provided by the accurately trained network.

(L) Number of extra requests per sample. Figure 23 re-
ports the hit-rate performance and training accuracy when
the number of extra requests for computing the hit rate
varies from 0 to 500K requests. The setting with L = 0 is
especially interesting because it is equivalent to not having
hyperparameter L at all. Compared to the other examined
settings, L = 0 is inferior in terms of both hit-rate performance
and training accuracy: Figure 23 reveals the lowest average
hit rate and longest training span needed to reach the same
accuracy level. Selecting the best samples based only on the
K requests of the current window makes such myopic learning
ineffective because it ignores future hit consequences of the
current admission decisions. This result validates our design
choice of introducing hyperparameter L and considering extra
subsequent requests to calculate the hit rate for decision
samples.

While the pattern of the accuracy convergence stays qual-
itatively similar across all considered positive values of L,
Figure 23 exhibits the highest hit rate in the default setting
of L = 150K requests. The lower hit rates for the larger L
values of 200K and 500K requests indicate that not only being
myopic but also looking too far ahead is counterproductive. We
attribute this effect to the accumulating inability to reliably
predict how the current admission decisions influence the hit
consequences that lie too far into the future.

(c) Contribution factor for the last extra request. We
examine the following five values of hyperparameter c: 0,
0.1%, 1% (default), 10%, and 100%. The case of c = 0 is

equivalent to the setting with c = 1%, K= 50K requests,
and L = 0, for which we already observed poor hit-rate and
accuracy-convergence behaviors in the sensitivity analysis for
hyperparameter L above. The other extreme of c = 100% is
the same as the setting with c = 1%, K= 200K requests,
and L = 0, which deviates from the default setting in two
dimensions: increase of K from 50K to 200K requests and
decrease of L from 150K requests to 0. The above sensitivity
analyses for hyperparameters K and L already showed that
each of these individual deviations was detrimental, creating
the expectation that their combination should lead to even
worse results. Indeed, Figure 24 shows that the setting of c =
100% exhibits the slowest growth of the training accuracy
and results in the lowest hit-rate performance. On the other
hand, the intermediate c values around the default setting
of 1% demonstrate qualitatively similar accuracy-convergence
profiles and deliver similarly high hit rates, with the default
value of c = 1% providing the highest hit rate.

(m) Number of generated decision samples. As we increase
the number of generated samples from 10 to 1K, Figure 25
unveils a surprisingly steady picture. Despite our expectation
that larger values of m should diversify the pool of samples to
select from and thereby make the learning more effective, the
highest hit rate is achieved around the intermediate default set-
ting of m = 250 samples. We explain the result by observing
that generating more samples has the side effect of selecting
more samples for learning: the additionally selected samples
might have lower hit rates, which undermines the ability of the
algorithm to learn admission behaviors optimizing the hit-rate
performance.

For all examined values of m, Figure 25 also shows quali-
tatively similar profiles of the accuracy convergence. Because

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



a smaller number of generated decision samples induces
lower computational overhead on each step of any sampling-
selection-learning iteration, smaller m values are preferable.
Overall, the sensitivity analysis points toward generating a
relatively small number of decision samples.

(p) Percentage of the samples selected for learning. The
selection step of the RL-Cache training algorithm segregates
the top pth percentile of the generated decision samples with
the highest hit rates and utilizes the segregated samples for
learning. Figure 26 reports the average hit rate and training-
accuracy dynamics for the p values of 1%, 5%, 10% (default),
20%, and 50%. Selecting the top half of the generated samples
yields the lowest average hit rate. This is consistent with our
above observation for hyperparameter m: expanding the seg-
regated pool with samples that have lower hit rates interferes
with effective learning of an admission strategy that maximizes
the average hit rate. Besides, the setting of p = 50% exhibits
the slowest accuracy convergence: not only the training span
needs to be the longest for the accuracy to rise to the same
level but also the computational overhead of any sampling-
selection-learning iteration is the highest due to dealing with
the largest number of samples at the learning step.

On the other hand, the smallest examined setting of p =
1% results in a low average hit rate as well. We attribute
this to overfitting to the small set of decision samples and,
consequently, not being able to predict future near-optimal
admission decisions reliably. The sensitivity study indicates
that intermediate p settings around the default value of 10%
are preferable because of providing a high average hit rate
without imposing a large training overhead.

(q) Number of subsequent windows for the cache refill.
Hyperparameter q specifies how frequently the RL-Cache
training algorithm refills the cache to keep the cache state
close to what it would have been if the most recently learned
admission strategy were used from the very beginning. The
design incorporates this hyperparameter with the expectation
that smaller q values should yield higher hit rates. Figure 27
depicts a rather different outcome. While the larger q values
of 10 and 100 windows indeed provide lower hit rates than
the default q setting of 4 windows, the hit rate is the lowest
with the smallest q value of 1 window. Across all examined
q values, the qualitative pattern of the accuracy convergence
remains similar. Because simulating a cache refill imposes an
extra computational overhead, larger q values are preferable.
Overall, refreshing the cache state every 4 windows or so
seems appropriate.

To sum up, the above extensive sensitivity analyses justify
the relevance of all six hyperparameters and corroborate that
their default values constitute a near-optimal configuration
for RL-Cache. The sensitivity studies also offer various in-
teresting insights into the RL-Cache behavior. Sizing of the
window presents a trade-off between the training effort and
hit rate delivered by the accurately trained network. The
consideration of additional subsequent requests to compute
the hit rates of decision samples improves the average hit-
rate performance. However, looking too far ahead into the
future is counterproductive. The sampling and selection steps
of the RL-Cache training algorithm are subject to a balance

between (a) identifying samples with sufficiently high hit rates
to enable effective learning that maximizes the average hit rate
and (b) keeping the pool of such samples sufficiently diverse
to avoid overfitting. While the cache refilling helps in general,
it should not be done for every window.

V. CONCLUSION

This paper designed and evaluated RL-Cache, an algorithm
that applies model-free RL to cache admission in an edge CDN
server. RL-Cache relies on direct policy search that combines
MC sampling with stochastic optimization to maximize the
cache hit rate. The algorithm considers a broad set of features
including the object’s size, frequency, and recency characteris-
tics. Our publicly available RL-Cache implementation supports
batch processing of requests to keep the processing overhead
low. Our evaluation used Akamai’s production traces from the
image, video, and web traffic classes. We introduced the notion
of active bytes to characterize the cache size needed to achieve
a high hit rate on a trace. Our results for different cache
sizes showed that RL-Cache performed better than, or at least
as well as, state-of-the-art admission algorithms. Thus, RL-
Cache is highly suitable for production settings where request
patterns and cache partitions for traffic classes vary.

We extensively evaluated sensitivity of RL-Cache to various
factors, such as the location and traffic class used for its
training and/or execution. The evaluation showed that the CDN
can operate scalably by training RL-Cache in one location
and running the algorithm on traces of the same or different
traffic classes in other locations of the same geographic
region. Also, after assessing feature correlation and feature
importance, we considered promising reduced sets of object
features and determined that RL-Cache achieves the best hit-
rate performance when using the full set of its eight features.

Our analysis of the RL-Cache sensitivity to its hyperpa-
rameter values unveiled interesting insights into the algorithm
behavior. We showed that choosing the window size was
subject to a trade-off between the training effort and hit
rate provided by the accurately trained network. While RL-
Cache improved its average hit-rate performance by involving
extra subsequent requests into calculation of the hit rates
for decision samples, looking too far into the future had
a negative effect. The training algorithm faced the tension
between the need to learn from samples with sufficiently high
hit rates and the danger of overfitting when the pool of samples
selected for the learning step was insufficiently diverse. We
also demonstrated that refilling of the cache according to the
latest learned admission strategy was useful if not done too
frequently.

This paper constitutes a good first step that opens ways
for generalizing the RL-Cache algorithm to cache eviction,
distributed caching in multiple servers, and joint optimization
of caching and cache deployment [34]. Complementing the
reported results on feature importance, we plan to work on
better explainability of RL-Cache admission decisions via
techniques used in [35] and more recent approaches [23].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



REFERENCES

[1] F. Chen, R. K. Sitaraman, and M. Torres, “End-User Mapping: Next
Generation Request Routing for Content Delivery,” in SIGCOMM, 2015.

[2] K. Morales and B. K. Lee, “Fixed Segmented LRU Cache Replacement
Scheme with Selective Caching,” in IPCCC, 2012.

[3] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-
Dual-Size-Frequency Caching Policy,” HP, Tech. Rep., 1998.

[4] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets in Content
Delivery,” in SIGCOMM, 2015.

[5] D. Berger, R. K. Sitaraman, and M. Harchol-Balter, “AdaptSize: Orches-
trating the Hot Object Memory Cache in a Content Delivery Network,”
in NSDI, 2017.

[6] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, 2010.

[7] F. Velazquez, K. Lyngstol, T. F. Heen, and J. Renard, “The Varnish Book
for Varnish 4.0.” Varnish Software AS, 2016.

[8] B. Fitzpatrick and M. Community, “Memcached,” GitHub, 2019,
https://github.com/memcached/memcached.

[9] W. Reese, “Nginx: The High-Performance Web Server and Reverse
Proxy,” Linux J., vol. 2008, no. 173, 2008.

[10] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang,
“DeepCache: A Deep Learning Based Framework For Content Caching,”
in NetAI, 2018.

[11] K. Suksomboon et al., “PopCache: Cache More or Less Based on
Content Popularity for Information-Centric Networking,” in LCN, 2013.

[12] V. Kirilin, “RL-Cache,” GitHub, 2019, https://github.com/WVadim/RL-
Cache.

[13] A. Sundarrajan, M. Feng, M. Kasbekar, and R. K. Sitaraman, “Footprint
Descriptors: Theory and Practice of Cache Provisioning in a Global
CDN,” in CoNEXT, 2017.

[14] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “RL-
Cache: Learning-Based Cache Admission for Content Delivery,” in
NetAI, 2019.

[15] G. B. Mathews, “On the Partition of Numbers,” Proceedings of the
London Mathematical Society, vol. 28, 1897.

[16] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A Highly Efficient
Cache Admission Policy,” arXiv:1512.00727v2, 2015.

[17] V. Fedchenko, G. Neglia, and B. Ribeiro, “Feedforward Neural Networks
for Caching: Enough or Too Much?” arXiv:1810.06930v1, 2018.

[18] J. Cobb and H. ElAarag, “Web Proxy Cache Replacement Scheme
Based on Backpropagation Neural Network,” J. of Systems and Software,
vol. 81, 2008.

[19] H. Khalid and M. S. Obaidat, “KORA-2: A New Cache Replacement
Policy and Its Performance,” in ICECS, 1999.

[20] D. Berger, “Towards Lightweight and Robust Machine Learning for
CDN Caching,” in HotNets, 2018.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[22] Y. Kazak, C. Barrett, G. Katz, and M. Schapira, “Verifying Deep-RL-
Driven Systems,” in NetAI, 2019.

[23] A. Dethise, M. Canini, and S. Kandula, “Cracking Open the Black Box:
What Observations Can Tell Us About Reinforcement Learning Agents,”
in NetAI, 2019.

[24] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural Packet Classification,”
in SIGCOMM, 2019.

[25] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning Scheduling Algorithms for Data Processing Clusters,”
in SIGCOMM, 2019.

[26] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep Reinforcement Learning: A Brief Survey,” Signal Processing M.,
vol. 34, no. 6, 2017.

[27] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disserta-
tion, University of Cambridge, 1989.

[28] R. Y. Rubinstein and D. P. Kroese, The Cross-Entropy Method: A Unified
Approach to Combinatorial Optimization, Monte-Carlo Simulation, and
Machine Learning. Springer, 2004.

[29] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation
Functions,” arXiv:1710.05941, 2017.

[30] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
Generalization in Reinforcement Learning,” arXiv:1812.02341v3, 2019.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Rep-
resentations by Back-Propagating Errors,” Nature, vol. 323, no. 6088,
1986.

[32] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Distributed Systems,” arXiv:1603.04467v2, 2016.

[33] T. K. Ho, “Random Decision Forests,” in ICDAR, 1995.
[34] S. Hasan, S. Gorinsky, C. Dovrolis, and R. K. Sitaraman, “Trade-offs

in Optimizing the Cache Deployments of CDNs,” in INFOCOM, 2014.
[35] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”:

Explaining the Predictions of Any Classifier,” in KDD, 2016.

Vadim Kirilin is a Machine Learning Engineer at
Yandex LLC, Russia. He received an M.S. degree
from Carlos III University of Madrid, Spain in 2017
and B.S. degree from Lomonosov Moscow State
University, Russia in 2015. His primary research
interests are foundations of machine learning, neural
network pruning, contextual bandits, and reinforce-
ment learning.

Aditya Sundarrajan is a Research Scientist at
Facebook, Inc., USA. Dr. Sundarrajan received his
Ph.D. degree from the University of Massachusetts
Amherst, USA in 2020, M.S. degree from the Uni-
versity of Arizona, USA in 2013 and B.E. degree
from Anna University, India in 2010. His primary
research interests are distributed systems, green
computing, content delivery networks, and machine
learning.

Sergey Gorinsky is a tenured Research Associate
Professor at IMDEA Networks Institute, Spain,
where he leads the NetEcon research group. Dr.
Gorinsky received his Ph.D. and M.S. degrees from
the University of Texas at Austin, USA in 2003
and 1999 respectively and Engineer degree from
Moscow Institute of Electronic Technology, Russia
in 1994. From 2003 to 2009, he served on the
tenure-track faculty at Washington University in St.
Louis, USA. Sergey Gorinsky graduated four Ph.D.
students. The areas of his primary research inter-

ests are computer networking, distributed systems, and network economics.
Sergey Gorinsky made research contributions to real-time scheduling, buffer
sizing, economics of network interconnection, service differentiation, cache
deployment, multicast, congestion control, networking education, routing,
bulk data transfer, and machine learning for caching. He served as a TPC
chair of ICNP 2017 and other conferences, as well as a TPC member for
a much broader conference population including SIGCOMM, CoNEXT, and
INFOCOM. Sergey Gorinsky contributed to conference organization in many
roles, such as a general chair of SIGCOMM 2018. He also served as an eval-
uator of research proposals and projects for the European Research Council
(ERC StG), European Commission (Horizon 2020, FP7), and numerous other
funding agencies.

Ramesh K. Sitaraman is a Professor in the College
of Information and Computer Sciences at the Uni-
versity of Massachusetts at Amherst. His research
focuses on Internet-scale distributed systems, includ-
ing algorithms, architectures, performance, energy
efficiency, security, and economics. As a principal
architect, he helped create the Akamai Content De-
livery Network (CDN), the world’s first major CDN
that currently delivers a significant fraction of the
Internet traffic. He retains a part-time role as Aka-
mai’s Chief Consulting Scientist. Prof. Sitaraman is

a recipient of the inaugural ACM SIGCOMM Networking Systems Award
for his work on the Akamai CDN, DASH-IF Excellence in DASH award for
his work on ABR algorithms, an NSF CAREER Award, a College of Natural
Sciences Outstanding Teacher Award, and a Lilly Fellowship. He received
a B.Tech from the Indian Institute of Technology, Madras and a Ph.D. in
computer science from Princeton University. He is a Fellow of the ACM and
the IEEE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JSAC.2020.3000415

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


