
Improving Individual Flow Performance with
Multiple Queue Fair Queuing
Manfred Georg, Christoph Jechlitschek, and Sergey Gorinsky

Applied Research Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, Missouri 63130-4899, USA

Email: {mgeorg, chrisj, gorinsky}@arl.wustl.edu

Abstract-Fair Queuing (FQ) algorithms provide isola- In this paper, we consider link scheduling with con-
tion between packet flows, allowing max-min fair sharing stant memory requirements regardless of the number
of a link even when flows misbehave. However, fairness of flows. Such scheduling disciplines include Stochas-
comes at the expense of per-flow state. To keep the memory
requirement independent of the flow count, the router can tic Fair Queuing (SFQ) [11], Stochastic Fair Blue
isolate aggregates of flows, rather than individual flows. (SFB) [12], and Random Early Detection with Pref-
We investigate the feasibility of protecting individual flows erential Dropping (RED-PD) [13]. When the number
under such aggregate isolation in the context of Multiple of flows becomes large, these schemes generally treat
Queue Fair Queuing (MQFQ), where the router maintains multiple flows as a single aggregate. For example, SFQ
a fixed number of queues and allows each flow to access
multiple queues. MQFQ places packets into the shortest uses a fixed number of ueues and serves mulgtile flows
queue associated with their flow. The extra queues protect from the same queue. Flows within an aggregate are not
the flow against congestion caused by a misbehaving flow isolated from one another and hence share queuing delay
in a shared queue. However, multiple per-flow queues and loss characteristics.
also enable the misbehaving flow to increase its unfairly We develop Multiple Queue Fair Queuing (MQFQ),
acquired fraction of the link capacity. We discuss avoidance
of packet reordering within a flow and compare MQFQ an SF extensIon where the router also mantans a fixed
with prior schemes for aggregate scheduling. number of FIFO queues but allows a flow to access

more than one queue. Upon arrival of a packet from
I. INTRODUCTION a flow, the router places the packet into the shortest of

the queues associated with the flow. MQFQ intends to
Fair Queuing (FQ) algorithms [1]-[7] dedicate a sep- serve different flows from different sets of queues so

arate queue to each flow and schedule packets for trans- that a misbehaving flow is unable to congest all queues
mission over a congested link so that every flow receives of another flow. Our investigation shows that two queues
an average service rate that approximates its max-min per flow are optimal because a higher number of per-flow
fair share of the link capacity [8]. In comparison to queues permits a greedy flow to grab a larger fraction
the traditional First-In First-Out (FIFO) scheduling of of the link capacity. We also experimentally compare
packets, FQ provides a significant degree of isolation MQFQ with SFQ and SFB.
between flows and therefore exhibits superior resilience
against misbehaving flows. For example, if a User Data- II. RELATED WORK
gram Protocol (UDP) flow transmits at an unfairly high SFQ maps each flow into one of a fixed number of
rate, the excessive transmission does not disrupt well- FIFO queues. When the number of flows is high, a
behaving flows; instead, FQ penalizes the aggressive flow shares its queue with other flows. SFQ strives to
flow through accumulation and eventual discard of its distribute flows evenly among all queues and thereby
packets at the router. Fair queuing also improves the support statistically fair sharing in networks with well-
fairness properties of end-to-end congestion control. behaving traffic. Furthermore, SFQ offers some pro-
While the sending rate of Transmission Control Protocol tection against greedy flows by limiting the impact of
(TCP) in a network of FIFO routers is inversely propor- excessive transmission on the flows in other queues. In
tional to round-trip time [9], [10] and hence not max- particular, if all k queues of the link are backlogged, the
min fair, using FQ with sufficient buffers at bottleneck service rate for any flow is capped at the fair share of
links enables TCP to transmit at max-mmn fair rates. one queue, i.e., 1/k of the link capacity.
Unfortunately, the fairness benefits of FQ come at the SFB extends Blue [14], which itself is an enhancement
expense of maintaining per-flow state at the router. of Random Early Detection (RED) [15]. Blue maintains
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a single FIFO queue but might discard an incoming 1.000
packet even if the link buffer is not full. The discard 0.500. MQFQ partial interference
probability depends on current and past queuing: while SFQ complete interference
a buffer overflow increases the discard probability, the - - MQFQ complete interference
discard probability decreases whenever the queue emp- 0 100-'
ties. SFB extends Blue by adding a Bloom filter to take - X
over calculation of the discard probability. The Bloom @-
filter uses multiple hash functions to assign each flow to ax
a fixed number of bins. Every bin has a fixed size and a
variable discard probability. When a packet arrives from 001 0 "
a flow, SFB increments a counter for each bin associated 0.005_
with the flow. If a bin overflows, SFB discards the packet
and increases the discard probability of the bin. SFB
discards the incoming packet with probability equal to 0.001t 2 30 10 20 30 40 50 60
the minimum among the discard probabilities of the bins Number of queues
associated with the flow. If a bin empties, its discard Fig. 1. Probabilities of flow interference under MQFQ and SFQ.
probability decreases.
A different way to deal with a misbehaving flow we report the derived probabilities of flow interference.

is to detect it and limit its rate explicitly [16]-[18]. In SFQ with k queues, two flows interfere when hashed
However, the identify-and-limit approach suffers from into the same queue:
the following drawbacks: 1) its effectiveness depends on 1
the traffic pattern: e.g., during coordinated attacks, the PSFQ k (1)
number of misbehaving flows that need to be identified
and rate-limited might exceed the maximum supported In MQFQ, two flows interfere either completely when
by the router; 2) since identification takes time, rate- flow x shares all its queues with flow y:
limiting kicks in only after some delay; 3) mild cheaters omp 4 3
that inflate transmission modestly might evade detec- PMQFQ = k2 (2)
tion. To ameliorate these problems, identify-and-limit or partially when flow x shares at least one of its queues
schemes can adopt the technique proposed in this paper. with flow y:
In particular, one can identify and rate-limit greedy
flows first and apply our multiple-queue technique to ppart 4 6 3
the remaining flows. MQFQk k2 +

Figure 1 shows that all three probabilities decrease when
III*MULTIPLE QUEUE FAIR QUEUING the number of queues grows. While interference under

Multiple Queue Fair Queuing (MQFQ) is an SFQ en- SFQ and partial interference under MQFQ diminish
hancement that allows a flow to utilize multiple queues. similarly as 0(l), complete interference under MQFQ
Instead of a single hash function as in SFQ, MQFQ decreases much faster as 0(k2).
uses multiple hash functions to determine a set of FIFO Although MQFQ might place packets of a flow into
queues for a flow. When a packet arrives, MQFQ applies different queues, no packet reordering occurs if pack-
all hash functions to the packet header to compute ets have the same size. If packet sizes are different,
potential queues. MQFQ puts the packet into the queue reordering is possible but contained within one round
with the soonest service. If one queue associated with a of queue traversal. One remedy is to buffer packets for
flow grows large, the flow uses another of its queues and one round to restore their order before sending them into
thereby bypasses the congestion. Since a flow can flood the link. Alternatively, if the router fragments incoming
multiple queues, there exists a trade-off between the packets into equally-sized cells, applies MQFQ to the
degree of extra capacity surrendered to a misbehaving cells, and reassembles the packets before sending them
flow and the number of flows starved by the misbehaving into the link, then reordering affects neither the cells nor
flow. As we show later, using two queues per flow is the reassembled packets.
most beneficial. Unless explicitly stated otherwise, our
subsequent references to MQFQ denote its instance with IV. EVALUATION
two hash functions. As in SFQ, MQFQ serves all queues We conduct simulations in ns-2 version 2.29 [20] to
in the round-robin order. compare MQFQ with SFQ and SFB experimentally. For

In its extended version [19], our paper analyzes inter- SFQ, we modify the ns-2 default implementation by
ference between flows under SFQ and MQFQ. Below, improving the hash functions to avoid their frequent
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Fig. 2. Responsive traffic from 50 well-behaving TCP flows. Fig. 3. An unfair CBR flow against 49 well-behaving TCP flows.

collisions. We implement MQFQ by extending our im- more than 300 kbps, i.e., about a one-queue share of the
plementation of SFQ. While all queues share the link link capacity. Due to uneven distribution of flows among
buffer space, we allow a queue to grow beyond its fair queues, SFQ also gives out unfairly high rates to some
memory share if free space is at least the queue size TCP flows at the expense of other TCP flows. Whereas
plus two packets. The code of our implementations is SFB restricts the CBR flow most successfully, MQFQ
publicly available [21]. is not as effective and moreover surrenders almost a
We experiment in a single-bottleneck dumbbell topol- two-queue share of link capacity to the misbehaver.

ogy. The core bottleneck link has capacity 5 Mbps. The MQFQ lives up to its intention to protect individual
capacity of each access link is 100 Mbps. Round-trip flows: slowest TCP flows receive highest throughput
propagation delays are fixed at 60 ms for constant-bitrate under MQFQ.
(CBR) flows but distributed uniformly between 60 and The benefits from MQFQ are most apparent when the
80 ms for TCP flows. All experiments use 1,000-byte number of misbehaving flows is large. Figure 4 reports
packets and 100-packet link buffers. We schedule the throughputs in experiments where fifty CBR flows trans-
bottleneck link using one of the evaluated schemes. All mit at an unfairly high rate about 150 kbps each and
other links adhere to FIFO queuing and discard packets thereby overload the 5-Mbps link by 50%. The CBR
only upon buffer overflow. Unless stated otherwise, SFQ transmission is randomized, allowing a sending rate to
and MQFQ use 16 queues. SFB employs two levels of deviate slightly from the 150-kbps average. Throughputs
bins with 23 bins on each level. We measure steady- under MQFQ vary the least: from 74 to 138 kbps.
state throughputs between 10 and 50 seconds into each The throughput range under SFQ is wider: from 56
experiment and repeat the experiment 10 times. Plotted to 152 kbps. SFB falters dramatically: the multitude of
results order flows by throughput and depict one standard misbehaving flows overwhelms the Bloom filter, inflates
deviation with error bars. We shift the plots for MQFQ the discard probabilities, and prevents SFB from utilizing
and SFB by 0.2 and 0.4 respectively in order to reduce the bottleneck link fully. SFB limits individual rates for
overlap and improve readability of our graphs. 27 flows to about 20 kbps. Large error bars for the other

First, we examine well-behaving settings where the flows indicate that SFB limits each of these flows in
bottleneck link carries data from fifty TCP flows. Fig- some but not all of our ten experiments.
ure 2 shows that SFQ, SFB, and MQFQ provide flows Finally, we change the number of queues per flow and
with similar distributions of throughput. Because SFQ denote the respective version ofMQFQ by appending the
yields the widest range of individual throughputs, fair- number to its name: SFQ is MQFQ1, regular MQFQ is
ness is the worst under SFQ. While slowest flows achieve MQFQ2, etc. As Figure 5 shows for fifty well-behaving
highest throughput under MQFQ, the graph confirms the TCP flows, 2 queues versus 1 queue per flow yield
intended fairness benefits of MQFQ. significant improvement but increasing the number of
We modify the above scenario by replacing one of the queues above 2 provides only marginal extra benefits.

TCP flows with a CBR flow that persistently transmits Furthermore, our other experiments [19] confirm that a
at an unfairly high rate of 2.5 Mbps. Since the CBR flow misbehaving CBR flow is able to grab almost the entire
always acquires the highest throughput under each of the rate allocated to the queues that the flow can access.
examined schemes, this flow always appears in Figure 3 Although the misbehaver acquires the extra capacity
as number 50. Under SFQ, the misbehaving flow forces primary at the expense of fast flows, slow flows do not
all TCP competitors out from its queue and acquires benefit from enriching the CBR flow either. Hence, we
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Fig. 4. Link overload by fifty CBR flows. Fig. 5. Fifty well-behaving TCP flows under MQFQ with different

numbers of queues per flow.
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