
MCP: Few Bits for Fairing
and Small Queues in the Stable State

Maxim Podlesny and Sergey Gorinsky

Applied Research Laboratory
Department of Computer Science and Engineering, Washington University in St. Louis

One Brookings Drive, St. Louis, MO 63130-4899, USA�
podlesny,gorinsky � @arl.wustl.edu

Abstract— Interactive and other delay-sensitive applica-
tions are interested in keeping end-to-end delays of their
packets minimal. Unfortunately, congestion control offered
by Transmission Control Protocol (TCP) and other existing
protocols inflates the end-to-end delays by building up
queues at bottleneck links. In this paper, we investigate
Multimodal Control Protocol (MCP) designed to maintain
low queues after converging to the stable state where MCP
flows utilize shared bottleneck links efficiently and fairly.
To achieve this goal, MCP incorporates multiple modes
of operation and allocates few bits in each packet header
for explicit communication between hosts and routers. An
innovative aspect of the explicit communication mechanism
is an ability of a flow to urge all flows on its bottleneck
links to switch temporarily into a fairing mode and thereby
improve fairness of the bottleneck sharing. To make the
fair sharing independent of round-trip times and packet
sizes, MCP uses the sending bitrate as a control parameter
and employs uniform adjustment timing for all flows. Our
evaluation of MCP demonstrates its efficient fair operation
and significantly shorter stable-state queues than under
existing congestion control protocols.

I. INTRODUCTION

Queuing delay experienced by packets inside the
network is of significant importance for some appli-
cations. For example, human perception of an inter-
active multimedia application might degrade dramati-
cally after round-trip time (RTT) exceeds few hundred
milliseconds. In traditional Internet congestion control
exemplified by Transmission Control Protocol (TCP) [1],
transmission increases until the bottleneck link buffer
saturates, causing the router to discard a packet. Since
conventional routers employ First-In First-Out (FIFO)
discipline for their link scheduling, such TCP-like prob-
ing for the available network capacity builds up long
queues at shared bottleneck link buffers and hampers per-
formance of delay-sensitive applications. In this paper,
we explore how congestion control can keep link queues
short. While this problem has a lot of related work,
our investigation centers around innovative features of
Multimodal Control Protocol (MCP) [2].

Support of low queuing together with other congestion
control objectives (e.g., high utilization of bottleneck
links) is a challenging problem. A common solution
is to operate in multiple modes, with different modes
dedicated to fulfilling different goals. MCP – as its name
manifests – also follows this paradigm. In particular,
MCP employs a fairing mode dedicated to improving
fairness of bottleneck link sharing. Other modes enable
convergence to efficient utilization of the network capac-
ity. After MCP achieves efficient fair sharing of a bottle-
neck link, all competing flows switch to a stable mode
where they transmit at constant rates. The constant-rate
transmission in the stable mode is a noteworthy MCP
innovation. Since transmission at constant rates is the
smoothest, MCP excels in keeping link queues short in
the steady state. To make the stable transmission rates
independent of RTT and packet sizes, MCP uses the
transmission rate as a control parameter and prescribes
uniform timing for rate adjustments in all flows.

To treat a newly started flow fairly, MCP incorporates
another innovative mechanism which relies on explicit
communication between hosts and routers. Whenever the
sender of a flow � sets special bits in sent packet headers,
the explicit communication mechanism notifies all flows
on bottleneck links of � to switch temporarily into the
fairing mode, allowing flow � to acquire its fair rate.

MCP is targeted for networks where time between
flow arrivals to a bottleneck link is longer than transition
to the steady state. Whereas we do not expect MCP to
improve performance in networks with congestion in the
core, Odlyzko indicates that Internet bottlenecks lie at
the network edge, within the ”first mile” or ”last mile”
of transmission [3]. MCP exhibits a greater promise in
such environments with lower levels of flow multiplexing
on bottleneck links.

This paper is organized as follows. Section II reviews
MCP. Section III presents related designs. Section IV
evaluates MCP. Section V concludes the paper with a
summary and discussion of future work.

1

1079

Mode Bottleneck link utilization Fairing bit Control rule
Range Encoding

Scaling � �����	�
��� 00 0 or 1 MI(2)
Fairing [0.48;0.98) 01 or 10 1 AI(80 kbps)
Enhancing [0.48;0.88) 01 0 MI(1.1)
Smoothing [0.88;0.98) 10 0 AI(80 kbps) until first overload then AD(80 kbps) once
Stable [0.88;0.98) 10 0 constant
Overloaded � �	� �������� 11 0 or 1 MD(0.5)

Fig. 1. Modes of MCP operation

II. REVIEW OF MCP

A. Explicit communication format

MCP allocates four bits in the header of each data
packet for explicit communication between hosts and
routers. Two of the bits are used to notify the sender
about the bottleneck link utilization of its data path. The
other two bits (fairing bit and this-path bit) enable the
sender to urge all flows sharing its bottleneck links to
operate in the fairing mode.

B. Router operation

Routers provide explicit feedback to senders through
receivers. To form the feedback, each router periodically
computes utilizations of its output links. Routers also
set fairing bits in forwarded packets to disseminate to
appropriate flows a request of operating in the fairing
mode.

C. Sender operation

The sender operates in one of the following six modes:
scaling, overloaded, fairing, enhancing, smoothing, and
stable. The choice of the mode depends on explicit
feedback in accordance with Figure 1. While the original
MCP proposal describes the modes in detail [2], below
we provide only a brief rationale for each of the modes:� The fairing mode is for convergence of MCP to fair-

ness and exercises Additive-Increase Multiplicative-
Decrease (AIMD) control [4] for seven increase-
decrease cycles. According to our analysis [5],
seven AIMD(� ; �	� �) oscillations suffice for highly
fair sharing. Figure 2 compares our analytical pre-
dictions with MCP steady-state fairness in ns-2 [6]
simulations for different durations of the fairing
mode. The convergence is the slowest when number� of flows on a shared bottleneck link is minimal,
i.e., 2. Although the predictions are somewhat off
due to simplicity of our model and ignored impacts
of other MCP modes, the packet-level simulations
confirm that that the seven-cycle longevity of the
fairing mode provides high fairness.� The scaling mode is for scalable increase of the
bottleneck link utilization to at least 48%.

Number of increase−decrease cycles
F

a
ir
n

e
ss

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

analysis: n = 10
analysis: n = 3
analysis: n = 2 (lower bound)
simulations: n = 2

Fig. 2. MCP fairness convergence: analysis of AIMD(� ; ��� �) versus
ns-2 simulations of MCP steady-state fairness for different durations
of the fairing mode.

� The enhancing mode is for scalable increase of the
bottleneck link utilization to at least 88%.� The smoothing mode raises the bottleneck link uti-
lization further toward 98% with cautious additive
steps avoiding a buildup of the link queue.� The overloaded mode provides MCP with scalable
response to overload of the bottleneck link.� The stable mode is a steady-state regime of
constant-rate transmission that sustains high utiliza-
tion and low queuing at the bottleneck link.

D. Receiver operation

The receiver sends an acknowledgment packet (ACK)
for every incoming data packet. ACK echoes the fairing
bit and encoding of the the bottleneck link utilization.

III. RELATED WORK

The problem of providing delay-sensitive applications
with low queuing of their packets at network links has
a lot of extensive and diverse related work. Below, we
just briefly discuss some of investigated approaches to
keeping link queues short.

Fair queuing algorithms such as Weighted Fair Queue-
ing (WFQ) [7] and Deficit Round Robin (DRR) [8]
maintain a separate queue for each flow sharing the
link and service the queues in a fair manner. The flow

2

1080

Time, sec

R
at

e,
 M

bp
s

0

5

10

15

20

0 100 200 300 400 500 600

RTT = 80ms
RTT = 80ms
RTT = 64ms
RTT = 48ms
bottleneck
capacity

Time, sec

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Time, sec

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

(a) (b) (c)
Fig. 3. Reaction of MCP to bottleneck link migrations: (a) transmission rates of the four flows, (b) utilization of the 15-Mbps link ��� , and
(c) utilization of the 20-Mbps link �! .

isolation protects a delay-sensitive flow from queuing
delays of other traffic. However, the solution requires
costly per-flow state, and the delay-sensitive application
still needs an end-to-end congestion control protocol to
keep the size of its own queue small.

Small link buffers [9], [10] assure that a shared queue
stays short. This approach also requires a complementary
end-to-end congestion control to ensure that buffer over-
flow and link underutilization do not disrupt application
performance. E-TCP [11] is a recently proposed loss-
driven protocol for such congestion control.

Delay-based congestion control is represented by such
protocols as Congestion Avoidance using Round-trip De-
lay (CARD) [12] and TCP Vegas [13]. In this approach,
a flow measures its RTT and curbs transmission when
RTT increases. The reaction to rising delays is helpful
for avoiding buffer overflows but unfortunately comes
only after the link queue has started to grow.

Explicit congestion feedback from routers enables a
congestion control protocol to prevent queuing. De-
pending on whether the explicit feedback consumes
few bits per packet or more, explicit congestion con-
trol protocol can be classified as limited-feedback and
rich-feedback. Rich-feedback designs include eXplicit
Control Protocol (XCP) [14], Rate Control Protocol
(RCP) [15], and JetMax [16]. Examples of limited-
feedback protocols are Explicit Congestion Notification
(ECN) [17] and Variable-structure congestion Control
Protocol (VCP) [18]. MCP belongs to the latter category
of limited-feedback designs.

Smooth adjustment algorithms bring a promise of
combining short link queues with high utilization of
bottleneck links in the steady state. Both linear and
nonlinear adjustments have been proposed for smooth
congestion control [19], [20]. Since transmission at con-
stant rates is the smoothest, the stable mode of MCP is
an extreme representative of this algorithmic family.

IV. EXPERIMENTAL EVALUATION

In this section, we report our simulations conducted in
version 2.29 of ns-2 [6] and discuss the results. General
settings in our experiments are as follows: a packet size
equals 1000 bytes; propagation delay of a bottleneck link
is 8 ms; buffer size of a link is equal to the product
of the link capacity and the minimum RTT among the
flows in the simulation; link queuing discipline is FIFO.
Unless stated otherwise, the capacity of a bottleneck
link is 20 Mbps, the capacities of non-bottleneck access
links are 40 Mbps, and the network topology is a single-
bottleneck dumbbell. To trace changes of a queue size
in time, we sample the queue size every 10 ms. To
plot the dependency of a queue size on a parameter,
we measure the instantaneous value of the queue size.
In the experiments, when we vary a single parameter
while keeping all the other parameters fixed, we conduct
5 simulations for each value and report the minimum,
average, and maximum values of each performance
metric in the simulations.

A. Convergent behavior with migrating bottlenecks

We illustrate MCP convergent behavior in a parking-
lot topology [5] with three potential bottleneck links "$# ,
#&% , and %(' that have capacity 15 Mbps, 18 Mbps,
and 20 Mbps respectively. The other links have capacity
40 Mbps. All links have propagation delay 8 ms. Propa-
gation RTTs for four examined flows are 80 ms, 80 ms,
64 ms, and 48 ms. After the third flow arrives at time
300 seconds, the bottleneck migrates from "$# to #)% .
Upon arrival of the fourth flow at time 400 seconds, the
bottleneck migrates again, now to link %(' . Figure 3
shows that MCP reacts to the bottleneck link migrations
by converging the flows to new fair efficient rates and
low in-network queuing.

B. Dependence on the number of flows

Figure 4 depicts MCP bottleneck link utilization and
queuing with different numbers of flows in the single-
bottleneck dumbbell topology where the core bottleneck

3

1081

Number of flows

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

minimum value
maximum value
average value

Number of flows

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

 x
10

0

0

3

6

9

12

15

0 100 200 300 400 500 600

minimum value
maximum value
average value
buffer size

Number of flows

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

0

50

100

150

200

250

300

0 100 200 300 400 500 600

minimum value
maximum value
average value

(a) (b) (c)
Fig. 4. Dependence of MCP performance on the number of competing flows: (a) utilization of the bottleneck link, (b) peak queue size at the
bottleneck link, and (c) peak queue size at the bottleneck link in the stable state.

RTT ratio

Fa
ir

ne
ss

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

minimum value
maximum value
average value

RTT ratio

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

minimum value
maximum value
average value

RTT ratio

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

0

3

6

9

12

15

1 3 5 7 9 11 13 15

minimum value
maximum value
average value

(a) (b) (c)
Fig. 5. Independence of MCP steady-state operation from RTT when the bottleneck link capacity is 50 Mbps: (a) fairness index, (b) utilization
of the bottleneck link, and (c) peak queue size at the bottleneck link.

link has capacity 200 Mbps and propagation delay 24 ms
while every access link has capacity 400 Mbps and
propagation delay 3 ms. The average link utilization
remains relatively stable (it varies between 0.896 and
0.968) but the queue size is significantly more sensitive
to the flow count. Although Figure 4b shows that MCP
avoids buffer overflow in all the conducted simulations,
per-flow buffer consumption under MCP is about 1.6
packets in general and about 0.26 packets in the steady
state.

The above experiments demonstrate that queuing un-
der MCP has imperfect population scalability because
no constant buffer size precludes buffer overflow with
arbitrarily many flows. Our ongoing study shows that
the imperfection is fundamental for asynchronous con-
gestion control. However, we also observe that the rate-
based MCP has significant headroom for improving its
population scalability. To realize this potential, we will
investigate window-based control for at least some of the
MCP modes, e.g., stable mode.

C. RTT heterogeneity

We simulate ten competing MCP flows with differ-
ent RTTs and use *�+-,/.* +1032 as a control parameter where4�57698

and
4�57:<;

respectively refer to the maximum and
minimum propagation RTT of all the flows.

4!57:3;
is

always set to 20 ms. Propagation RTTs of other flows are

uniformly distributed between
4 57:<;

and
4 5=6�8

. Figure 5
confirms that MCP steady-state operation is relatively
independent of RTT heterogeneity.

D. Packet-size heterogeneity

We also examine the impact of packet-size hetero-
geneity. Propagation RTTs of the flows are in the range
between 20 and 100 ms. We employ >?+-0@2> +-,/. as a control
parameter where A 5=6�8 and A 57:3; denote respectively the
maximum and minimum packet size across all the flows.
Packets within each particular flow are of the same size.
A 5=6�8 is always fixed to 1500 bytes. Figure 6 shows
relative immunity of MCP steady-state performance to
heterogeneity in packet sizes.

E. Comparison of MCP with VCP

Since VCP is the closest to MCP in terms of its design
aspirations and features, we compare MCP with VCP
in the topology where the bottleneck link capacity is
500 Mbps, and the capacities of the access links are
1 Gbps. In both experiments, 1000 flows with propaga-
tion RTT 60 ms arrive at random times between 0 and
1 second. Figure 7 traces the bottleneck link utilization
and queue size under each protocol. The peak queue size
is close to 39% under VCP and about 31% under MCP.
However, while the peak queue size under VCP stays at
the same level in the steady state, MCP reduces its peak

4

1082

Packet size ratio

Fa
ir

ne
ss

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

minimum value
maximum value
average value

Packet size ratio

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

minimum value
maximum value
average value

Packet size ratio

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

0

2

4

6

8

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

minimum value
maximum value
average value

(a) (b) (c)
Fig. 6. Independence of MCP steady-state operation from packet sizes when the bottleneck link capacity is 50 Mbps: (a) fairness index,
(b) utilization of the bottleneck link, and (c) peak queue size at the bottleneck link.

Time, sec

U
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

MCP
VCP

Time, sec

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

 x
10

0

0

5

10

15

20

25

30

0 10 20 30 40 50

queue size
buffer size

Time, sec

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

 x
10

0

0

5

10

15

20

25

30

0 10 20 30 40 50

queue size
buffer size

(a) (b) (c)
Fig. 7. MCP versus VCP: (a) bottleneck link utilization, (b) bottleneck link queuing under VCP, and (c) bottleneck link queuing under MCP.

queue size in the stable state dramatically to 1.7% of the
buffer size.

F. Validation of MCP parameter values

MCP is a protocol with multiple parameterized modes.
We experimentally examined whether chosen parameter
values are reasonable. Section II already reported our
validation for the 7-cycle longevity of the fairing mode.
Figure 8 evaluates the choice of 1.1 as the MI factor in
the enhancing mode. The plotted peak queue sizes are
from experiments where 10 flows with RTTs between 20
and 200 ms share a 50-Mbps bottleneck link. MI factors
below 1.1 do not reduce bottleneck queuing but under-
mine capacity scalability of the enhancing mode. On the
other hand, raising the MI factor beyond 1.15 produces
much longer queues and eventual buffer overflow.

V. SUMMARY AND DISCUSSION

In this paper, we presented and evaluated MCP, a
congestion control protocol for low stable-state queuing
at bottleneck links. To achieve its design objectives,
the protocol engages hosts and routers in limited ex-
plicit communication and exploits the insight that the
transmission should be kept constant after converging to
fair efficient rates. For convergence to fair transmission
rates, MCP incorporates a novel explicit-communication
mechanism that allocates fairing and this-path bits in
the header of each data packet. These two bits enable

the sender of a flow (e.g., of a new flow) to urge
all flows sharing its bottleneck links to operate in
the fairing mode for seven increase-decrease cycles of
AIMD(80 kbps; 0.5) control. Our analysis and simula-
tions confirm that the 7-cycle longevity of the fairing
mode is sufficient for highly fair sharing.

In addition to the fairing mode, MCP employs five
more control modes. The choice of the current mode
depends on the bottleneck link utilization communicated
to the sender explicitly via two additional bits in data
packet headers. The multimodal approach serves to equip
MCP with all its desired properties, which include high
bottleneck-link utilization, high fairness, and low queu-
ing in the steady state. To make the stable transmission
rates independent of RTT and packet sizes, MCP uses the
transmission rate as a control parameter and prescribes
uniform timing for rate adjustments in all flows.

Our evaluation of MCP and its comparison with VCP
show that, by and large, MCP meets its design objectives.
One major deviation is the undesirable growth of the
bottleneck link queue as the number of competing flows
rises. In our future work, we will investigate how to
improve the population scalability of MCP operation.
Below, we discuss our other three concerns about MCP
design:

1) Service for short flows is not an intended applica-
tion of MCP, which strives to provide small link
queues for long delay-sensitive flows in the steady

5

1083

MI factor

Q
ue

ue
 s

iz
e,

 p
ac

ke
ts

0

20

40

60

80

100

120

1.05 1.1 1.15 1.2 1.25 1.3

minimum value
maximum value
average value
buffer size

Fig. 8. Validation of 1.1 as the MI factor in MCP enhancing mode.

state. Since short flows care more about transient
behavior, MCP innovations are orthogonal to needs
of short flows and hence do not improve their
performance. A more serious implication of short
flows is a high frequency of their arrivals that
might prevent long flows from reaping the benefits
of the MCP stable mode. To address this problem,
we plan to enhance MCP with a mechanism that
distinguishes flows based on their size and pro-
vides them with size-specific services.

2) Synchronous control ensures that MCP flows hav-
ing the same bottleneck link operate in the same
mode. However, asynchrony of modes might be
beneficial in some scenarios. For example, TCP
might provide a new flow with faster conver-
gence to a fair transmission rate than under MCP
because the asynchronous TCP allows the new
flow to operate in the aggressive slow-start mode
whereas existing flows continue to operate in the
congestion-avoidance mode, where TCP acquires
the available capacity at a slower pace.

3) Vulnerability to host misbehavior is another con-
cerning property of MCP. In particular, by setting
the fairing and this-path bits persistently beyond
the prescribed seven increase-decrease cycles, a
malicious host can make all flows sharing its bot-
tleneck link to keep operating in the fairing mode,
causing needless oscillations of the bottleneck link
utilization and queue size.

The last two concerns are not unique to MCP. For
example, VCP also faces the issue of synchronous con-
trol. We plan to examine whether randomizing the mode
selection under some circumstances is able to realize
the potential benefits of asynchrony without undermining
the overall performance of MCP. The mechanism for
requesting the fairing mode of MCP operation adds
a new avenue for attacks to the already wide arsenal
available to malicious hosts. Since senders and receivers
might collude, effective protection against host attacks
necessitates router assistance. We will study lightweight

router techniques for making MCP resilient to host mis-
behavior. Due to the mode synchronization and uniform
timing of transmission adjustments, it seems easier for
routers to detect misbehaving MCP flows than flows of
other protocols where transmission rates depend on non-
uniform packet losses, RTT, and packet sizes.

REFERENCES

[1] V. Jacobson, “Congestion Avoidance and Control,” in Proceed-
ings ACM SIGCOMM 1988, August 1988.

[2] M. Podlesny and S. Gorinsky, “Multimodal Congestion Control
for Low Stable-State Queuing,” in Proceedings IEEE INFOCOM
Minisymposium 2007, May 2007.

[3] A. Odlyzko, “The Many Paradoxes of Broadband,” First Monday,
vol. 8, no. 9, September 2003.

[4] D. Chiu and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Journal of Computer Networks and ISDN, vol. 17, no. 1, pp.
1–14, June 1989.

[5] M. Podlesny and S. Gorinsky, “Multimodal Congestion Control
for Low Stable-State Queuing,” Department of Computer Science
and Engineering, Washington University in St. Louis, Tech. Rep.
WUCSE-2006-41, www.arl.wustl.edu/ B gorinsky/pdf/WUCSE-
TR-2006-41.pdf, August 2006.

[6] S. McCanne and S. Floyd, ns Network Simulator.
http://www.isi.edu/nsnam/ns/.

[7] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” in Proceedings ACM SIGCOMM
1989, September 1989.

[8] M. Shreedhar and G. Varghese, “Efficient Fair Queueing Using
Deficit Round Robin,” in Proceedings ACM SIGCOMM 1995,
September 1995.

[9] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router
Buffers,” in Proceedings ACM SIGCOMM 2004, September
2004.

[10] S. Gorinsky, A. Kantawala, and J. Turner, “Link Buffer Sizing: A
New Look at the Old Problem,” in Proceedings IEEE Symposium
on Computers and Communications (ISCC 2005), June 2005.

[11] Y. Gu, D. Towsley, C. Hollot, and H. Zhang, “Congestion Control
for Small Buffer High Speed Networks,” in Proceedings IEEE
INFOCOM 2007, May 2007.

[12] R. Jain, “A Delay-Based Approach for Congestion Avoidance
in Interconnected Heterogeneous Computer Networks,” ACM
Computer Communications Review, vol. 19, no. 5, pp. 56–71,
October 1989.

[13] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” in Pro-
ceedings ACM SIGCOMM 1994, August 1994.

[14] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for
High Bandwidth-Delay Product Networks,” in Proceedings ACM
SIGCOMM 2002, August 2002.

[15] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown,
“Processor Sharing Flows in the Internet,” in Proceedings Inter-
national Workshop on Quality of Service (IWQoS 2005), June
2005.

[16] Y. Zhang, D. Leonard, and D. Loguinov, “JetMax: Scalable
Max-Min Congestion Control for High-Speed Heterogeneous
Networks,” in Proceedings IEEE INFOCOM 2006, April 2006.

[17] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit
Congestion Notification (ECN) to IP,” RFC 2481, January 1999.

[18] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One
More Bit Is Enough,” in Proceedings ACM SIGCOMM 2005,
August 2005.

[19] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
Based Congestion Control for Unicast Applications,” in Proceed-
ings ACM SIGCOMM 2000, August 2000.

[20] D. Bansal and H. Balakrishnan, “Binomial Congestion Control
Algorithms,” in Proceedings IEEE INFOCOM 2001, April 2001.

6

1084

