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Abstract—This paper examines the operation of TFRC (TCP-
Friendly Rate Control) in scenarios where the receiver is un-
trustworthy. By misbehaving, a TFRC receiver can obtain a
higher data rate at the expense of competing traffic. We identify
and experimentally confirm several such attacks and designed
Robust TCP-Friendly Rate Control (RTFRC), a TFRC variant
which is resilient to receiver misbehavior. We also show that
additional attacks that are based on feedback timing and targeted
directly at RTFRC are unable to compromise the protocol. We
discuss existing and propose new techniques for protecting con-
gestion control protocols from receiver misbehavior in general.
The discussion includes analysis of what level of protection is
feasible with different amounts of feedback. Finally, we explore
methods that compress feedback reports without undermining
their verifiability.

I. INTRODUCTION

As multimedia applications gain importance in the Internet,

providing them with appropriate congestion control becomes

vital to the overall stability of Internet communications. Un-

fortunately, traditional TCP (Transmission Control Protocol)

congestion control [1], [2] exhibits two features that are

detrimental to multimedia applications. First, the use of re-

transmissions to provide in-order reliability introduces extra

delay. Second, the high variability of TCP transmission rates

over short timescales undermines streaming audio and video.

TFRC (TCP-Friendly Rate Control) [3], [4] was designed

to address these concerns. It offers no support for reliable

delivery and transmits data at smooth rates that remain fair

to TCP over long timescales. In addition to purely unicast

communications, TFRC is successfully used as a component

of overlay systems for multicast data dissemination, such as

Bullet [5].

A misbehaving receiver can lie to the sender of a TFRC

session in order to maximize its throughput at the expense

of competing traffic. Specific attacks by the receiver include

manipulating the loss event rate, Round Trip Time calculation,

and reported received rate. Furthermore, the Internet architec-

ture contains no safeguards against attacks by a selfish receiver.

In this paper, we explore how to protect TFRC and similar

protocols from receiver misbehavior. In particular, we present

Robust TCP-Friendly Rate Control (RTFRC) [6], a robust ver-

sion of TFRC. While our original proposal of RTFRC sketches

its main design features, this paper validates properties of the

protocol more thoroughly and extends the advocated protection

techniques to a general class of congestion control protocols.

Receiver misbehavior is a problem that is not unique to

TFRC. Savage et al. show how incorrect feedback enables

a misbehaving TCP receiver to increase substantially its

throughput at the expense of cross traffic [7], [8]. Protection

of TCP from receiver misbehavior relies on a cumulative
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nonce: the TCP receiver must prove in-order delivery of data

segments by providing the sender with XOR values of random

numbers (nonces) that the sender has attached to the data

segments. There are also attacks in Explicit Control Protocol

(XCP) which are difficult to protect against because of router

participation in the protocol [9].

Protecting TFRC against receiver misbehavior is inherently

more difficult than in TCP. Unlike TCP, TFRC separates

reliability from congestion control and does not retransmit lost

data segments, causing cumulative nonces to not be directly

applicable to TFRC. Also, unlike in TCP where the receiver

sends acknowledgments upon delivery of data segments, feed-

back in TFRC is asynchronous from delivery and includes

aggregate information which is difficult to verify.

Datagram Congestion Control Protocol (DCCP) [10], [11],

[12] partially addresses the receiver misbehavior vulnerabil-

ities of TFRC. Similarly to TFRC, DCCP does not support

reliable delivery. For congestion control, DCCP offers the

user a choice of multiple profiles. In particular, the chosen

congestion control can be TCP-like or TFRC-like. To protect

itself against receiver misbehavior, DCCP employs a nonce bit

by default. The protection is similar in general but less robust

than our approach in RTFRC. The other differences between

TFRC and DCCP’s TFRC-like profile are unimportant to the

problem studied in this paper.

The rest of the paper is organized as follows. Section II

describes TFRC. Section III presents our threat model and

experimentally demonstrates vulnerabilities of TFRC to selfish

receiver misbehavior in a real network. Section IV introduces

RTFRC, our robust version of TFRC which is resilient to the

identified receiver attacks. Section V analyzes the protection

offered by RTFRC through experiments in a real high-speed

network. Section VI discusses general approaches to protecting

protocols from receiver misbehavior and analyzes how small

feedback summaries can be used most effectively for such

protection. Section VII provides the paper with a summary.

II. TFRC

TCP cuts its transmission rate at least in half in response to

even a single packet loss. TFRC offers smoother transmission

that suits multimedia applications better [3]. In order to share

the network capacity fairly with TCP despite different behavior

in response to congestion, a TFRC connection determines its

transmission rate based on the TCP throughput equation [13]:

X =
s

R
√

2bp
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+ 3 · p · tRTO

√

3bp

8
(1 + 32p2)

(1)

where X denotes the fair transmission rate, s is the average

packet size, R represents RTT (round-trip time), tRTO denotes

the retransmission timeout, b is the number of data packets

acknowledged by a single feedback packet, and p is the loss

event rate. A loss event is defined as one or more packet losses

within a single RTT. To avoid the undesirable delay caused
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by retransmission of lost packets, TFRC offers no support for

reliable delivery.

As a result of TFRC being developed in conjunction with

TCP-Friendly Multicast Congestion Control (TFMCC) [14],

the role of the receiver in TFRC is more prominent than

in TCP. For example, the receiver measures the loss event

rate and includes it in feedback packets, allowing the sender

to compute the transmission rate. Feedback also echoes the

timestamps of data packets, thereby relieving the sender from

storing these values. In TFMCC, due to the asymmetry of

multicast communications, minimizing the sender involvement

is a rational design choice. Furthermore, assuming a trustwor-

thy environment, there was no reason to change this split of

responsibilities between sender and receiver when TFRC was

developed from TFMCC. However, a misbehaving receiver

can easily exploit this design by sending misleading feedback

packets.

TFRC feedback comprises four fields: (1) timestamp of

a data packet, (2) time passed since the data packet was

delivered, (3) loss event rate, and (4) receiver rate, i.e. the

rate of data packet delivery. The receiver rate is reported to

avoid excessive transmission into a congested network: TFRC

limits its transmission to twice the receiver rate.

III. EVALUATION OF VULNERABILITIES IN TFRC

While the original TFRC design assumes trustworthy par-

ticipants, this assumption of universal trust is not tenable in

the Internet. In this section, we relax this assumption and

demonstrate that an untrustworthy receiver can exploit TFRC

to acquire data at an unfairly high rate.

A. Threat model

Although TFRC trusts the receiver, RFC 3448 admits that

TFRC “may potentially be manipulated by a greedy receiver

that wishes to receive more than its fair share of network

bandwidth. A receiver might do this by claiming to have

received packets that were lost due to congestion” [4]. We

explore the possibility of such receiver misbehavior in more

detail. We assume that the only goal of the untrustworthy

receiver is to acquire its data at an unfairly high rate [15],

[16]. Our threat model does not include purely malicious

attacks. In particular, we do not consider denial-of-service

attacks where a receiver congests the network by transmitting

spurious packets or terminates other connections by spoofing

their control packets.

B. Experimental methodology

To evaluate vulnerabilities of TFRC to receiver misbehav-

ior, we conduct experiments in the ONL (Open Network

Laboratory), a network testbed built around extensible two-

gigabit routers [17], [18]. The ONL enables an experimenter to

configure network parameters such as topology, link capacities,

buffer sizes, and queuing disciplines. We experiment in a

topology with two core links, as shown in Figure 1. The first

link has a capacity of 3 Mbps while the capacity of the second

one is 5 Mbps. The second link becomes a bottleneck only

when additional traffic traverses it. All link buffers are FIFO

(First-In First-Out) and Droptail. The propagation delay of

every link, in both directions, is 25 ms and is implemented

by hardware in the routers. The bottleneck buffer sizes are set

to 37.5 kB, corresponding to one bandwidth-delay product.

We allocate the first 10 seconds of each experiment to

stabilize the network conditions before any misbehavior is in-

troduced. After the misbehavior starts, we allow an additional

5 seconds to re-stabilize the network conditions and only then

begin recording results. The measurements last for 60 seconds.

The first set of our experiments involves one well-behaving

TFRC connection, one misbehaving TFRC connection, and

a variable number of TCP SACK connections [19], [20]. All

connections transmit in parallel and terminate at one host. The

well-behaving and misbehaving TFRC connections transmit

from two different computers while all the TCP connections

originate from a third host. We use a standard implementation

for TFRC [21] but implement RTFRC from scratch [22]. In

subsequent sets of experiments, we introduce various types of

cross traffic on the core links.

C. Assessment of specific attacks

Based on the TFRC feedback format, we identify and

evaluate three types of attacks where the receiver manipulates

the loss event rate, RTT calculations, and reported receiver

rate respectively.

Manipulating the loss event rate is the most direct and

effective attack on TFRC. By underreporting the loss event

rate, a misbehaving receiver can easily deceive the sender into

transmitting at an unfairly high rate. The misbehavior can be

implemented by changing a single line of the TFRC code.

Figure 2 shows an instance of the attack. Two TFRC flows

compete with five TCP flows. After 10 seconds, the receiver

of one TFRC connection misrepresents the loss event rate by

reporting a value that is 32 times smaller than the actual rate.

The graphs confirm that the misbehaving receiver succeeds in

boosting the transmission rate of its connection.

We generalize the above to a set of experiments where

the TFRC receiver underreports its loss event rate to varying

degrees. Figure 3 shows the throughput observed by the two

TFRC and the average of 5 TCP flows in these experiments.

For each configuration, the experiment is repeated 10 times,

and the results are summarized with box plots. The boxes
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Fig. 3. Underreporting loss event rate

extend from the first to the third quartile, and the whiskers

extend to the furthest data point within half an interquartile

range of the box; outliers are plotted individually as circles.

To improve readability, the boxes depicting the results for

the TCP and misbehaving TFRC connections are staggered

slightly along the horizontal axis of the graph. The height of

the TCP boxes is much smaller since the displayed values are

averages for the 5 TCP flows. The variability in throughput

is greater during underreporting because the link is being

utilized more aggressively, which causes more severe loss

events where all connections backoff dramatically. Figure 3

confirms that understating the loss event rate is a potent

attack that enables the misbehaving TFRC receiver to boost

its connection throughput significantly (by a factor of 5) while

almost starving the parallel well-behaving TCP and TFRC

traffic. The differences in throughput with no underreporting

are caused because TCP is able to recover better from losses

at low capacity.

Manipulating RTT calculations is another potent way of

deceiving the sender. The sender computes RTT based on

the echoed timestamp and tdelay , which is the delay between

arrival of a data packet to the receiver and departure of the

feedback packet. The receiver can misrepresent both fields to

trick the sender into underestimating RTT and consequently

transmitting at an unfairly high rate. A side effect of de-

creasing the RTT estimate is a lower sender timeout value.

A misbehaving receiver can easily avoid undesirable timeouts
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Fig. 4. Underreporting RTT by a factor of 64
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Fig. 5. Underreporting RTT

by sending its feedback more frequently in accordance with

the lowered RTT estimate. Since the TFRC sender explicitly

tells its RTT estimate to the receiver, the receiver can precisely

control calculations at the sender. However, the receiver should

exercise care in not deflating the RTT estimate too much,

since behavior of the sender under a negative RTT estimate is

not specified by TFRC but depends on the implementation.

Figure 4 shows an attack where the receiver distorts RTT

calculations by overstating tdelay . The misbehavior starts 10

seconds into the experiment and results in an RTT estimate

that is one 64th of the actual value. Once again, the receiver

increases the transmission rate at the expense of competing

traffic; however, the attack is not as effective and predictable

as a direct attack on the loss event rate.

Figure 5 shows the throughput observed by a misbehaving

TFRC flow in a series of experiments where the misbehaving

TFRC receiver distorts the RTT estimate by a factor plotted

on the horizontal axis of the graph. Once again, we run the

experiment 10 times for each configuration and summarize the

results in box plots. The plots reveal that the RTT attack is

also dangerous and allows the misbehaving TFRC receiver to

obtain more than half of the bottleneck link capacity.

Manipulating the receiver rate allows the receiver to

circumvent the limit imposed by the sender on the trans-

mission rate. The receiver can use this attack to increase

the transmission rate acceleration during slow start, under

massive losses, and after quiescent periods. In our experiments,
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we were unable to translate potential transient benefits from

manipulating the receiver rate into any noticeable long-term

advantage for a misbehaving receiver. However, manipulating

this parameter value enables the TFRC receiver to keep the

packet loss rate above 50%, which might be used to launch a

powerful denial of service attack.

IV. DESIGN OF ROBUST TFRC

The previous section demonstrated vulnerabilities of TFRC

to receiver misbehavior. We now enhance the protocol to make

it resilient to the identified attacks. Our Robust TCP-Friendly

Rate Control (RTFRC) protocol combines two ideas to provide

this protection: computations are shifted from the receiver to

the sender, and feedback is verified at the sender. Below,

we discuss in detail how RTFRC applies these ideas. The

source code of our application-level RTFRC implementation

is available online [22].

A. Protecting the loss event rate

In TFRC the loss event rate is computed by the receiver

and sent explicitly in feedback. Verifying the loss event rate

sent by an untrustworthy receiver is difficult both due to its

complex definition and the aggregate nature of loss events. In

RTFRC, we simplify the situation by moving the computation

of the loss event rate from the receiver to the sender; this idea

is briefly mentioned in RFC 3448 [4].

With the sender computing the loss event rate, the main

challenge lies in verifying whether the receiver has received

data packets. To achieve this goal, we design a cumulative

nonce mechanism similar to those used for robust TCP [7],

[8], [23]. In particular, since TFRC does not support reliable

in-order delivery, we adopt a scheme that works despite loss of

nonces [23]. Hence, we allow a cumulative nonce to confirm

a data range that is not necessarily contiguous or aligned with

the beginning of the message.

Adding nonces leads to different packet formats in RTFRC.

Figure 6a shows the format of RTFRC data packets. The

header is simple and includes only a sequence number, RTT

estimate, packet nonce, and nonce reset flag. RTFRC uses two

types of acknowledgment (ACK) packets. The first, shown in

figure 6b is a normal ACK which cumulatively acknowledges

all data up to a sequence number, with a cumulative nonce

which ensures that the receiver cannot conceal loss of a data

packet. When packets are not received in order or when a

loss occurs, RTFRC uses bitmask ACKs. To acknowledge

an incontiguous range of data, a bitmask ACK specifies the

beginning and length of the range as well as a bit vector

identifying the data packets that the receiver has obtained

within the range. As Figure 6c shows, the bitmask ACK

also reports the cumulative nonce for the packets received

from the new range. In adherence to RFC 3448, our nonce

scheme preserves the definition of a loss event as one or more

packet losses within a single RTT. Furthermore, the scheme

helps the sender to determine the receiver rate accurately even

when congestion prevents the receiver from obtaining all data

packets.

We also introduce a mechanism enabling the sender to reset

the cumulative nonce explicitly. When the sender learns of a

loss event, the sender creates a new nonce and sets the nonce

reset flag in the header of the next data packet. After the packet

arrives, the receiver has to consider the packet as the beginning

of a new data range for feedback purposes.

When suggesting a sender-based variant of TFRC,

RFC 3448 argues for feedback via a reliable delivery mech-

anism. We believe that adding a reliable feedback channel

is an unnecessary burden. Therefore, RTFRC does not use

retransmissions or correction codes for its feedback. Our

experience shows that incorrect inference of loss events due to

loss of feedback packets does not disrupt RTFRC performance.

B. Protecting RTT calculations

A misbehaving receiver can manipulate RTT calculations

in TFRC by modifying the timestamp of a data packet or

by overstating tdelay . To fend off the first type of attack, the

sender stores timestamps locally instead of transmitting them

to be echoed by the receiver. To protect against the second

type of manipulation, we also eliminate the tdelay field from

feedback by requiring the receiver to send a feedback packet

only in immediate response to a data packet.

C. Protecting the receiver rate

Although our experiments do not confirm that a misbehav-

ing receiver can gain any long-term advantage from manipulat-

ing the receiver rate, it is prudent to fix vulnerabilities before

successful exploits are discovered. Luckily, our mechanism for

protecting the loss event rate also allows the sender to robustly

compute the receiver rate. Thus, we move the computation of

the receiver rate to the sender.

D. Summary of new design features

The main difference between TFRC and RTFRC lies in

shifting the computation of the loss event rate and receiver rate

from the receiver to the sender as well as in using a cumulative

nonce over a potentially incontiguous data range to verify

feedback. Minor changes include a reduction of the sender

timeout value from 4 RTT to 2.5 RTT, providing RTFRC with

a tighter control loop. The smaller timeout value reduces the

amount of delay that a misbehaving receiver can impose on

feedback without causing a timeout. The particular value of

2.5 RTT is chosen to avoid spurious timeouts. The timeout

value should be at least 2 RTT to tolerate loss of a single

feedback packet. Furthermore, the timeout value should be

large enough to cover variations in RTT. For environments

with small propagation delays, variations in RTT can be



5

0 2 4 6 8 10 12 14 16 18 20

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

TCP

TFRC

RTFRC

TCP flows run in parallel

T
h
ro

u
g
h
p
u
t 
(K

b
p
s
)

Fig. 7. RTFRC and TFRC with TCP cross traffic: all flows traverse both
core links.

comparatively large; adding a small constant (e.g. 10 ms) to the

timeout value effectively eliminates spurious timeouts in such

situations. Since adding a small constant does not undermine

the robustness of RTFRC when propagation delays are large,

we recommend this as a general rule for setting the sender

timeout value in RTFRC.

E. Performance of RTFRC

Our transformation of TFRC into RTFRC is geared toward

improving the latter’s security without undermining its perfor-

mance and fairness. To verify this we conduct three series of

experiments with one well-behaving RTFRC connection, one

well-behaving TFRC connection, and different types of well-

behaving TCP cross traffic. As before, we always repeat every

experiment 10 times in each configuration and summarize the

results with box plots.

Due to implementation differences RTFRC has a different

average throughput than TFRC. The cause of this difference

was not isolated, but might arise from the use of a b value of 1
in RTFRC. This number represents the number of TCP packets

acknowledged by a single feedback packet in the throughput

equation; the reference TFRC implementation uses a value of

2. Additional differences occur in keeping information about

loss events, and from history discounting, the standard TFRC

implementation has several choices for these parts of the

algorithm; we use their default configuration.

First, we conduct an experimental set with the same cross-

traffic pattern as in Section III, meaning that the TCP cross

traffic runs in parallel with TFRC and RTFRC along the two

core links. We vary the number of parallel TCP connections

from 0 to 20. Figure 7 shows that as the number of flows

grows, the average throughput of the RTFRC connection

declines proportionally to the fair rate of the first core link

and stays close to the average throughput of TFRC and TCP

connections.

The second series of experiments keeps the number of

parallel TCP connections on both core links at 5 but introduces

from 0 to 20 extra TCP cross traffic connections exclusively

on the second core link. Figure 8 plots the average throughput

of TFRC, RTFRC, and five TCP flows sharing the first core

link. The graph shows that as the number of extra TCP flows

increases, moving the bottleneck for the TFRC and RTFRC

connections from the first core link to the second core link,

RTFRC remains fair to TFRC and TCP.
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Fig. 8. RTFRC, TFRC, and 5 TCP flows on both core links when additional
TCP flows congest second core link.

Our last set of experiments in well-behaving RTFRC envi-

ronments examines the impact of cross traffic in the reverse

direction. In addition to the original five TCP, one TFRC,

and one RTFRC flows running in parallel, we also launch

extra TCP cross traffic on the reverse direction of the second

core link. We vary the number of TCP flows on the reverse

direction from 0 to 50. Figure 9 demonstrates that creating

congestion on the reverse path of the RTFRC connection does

not dramatically disrupt RTFRC efficiency and its fairness to

TFRC and TCP. In general, RTFRC and TFRC are unaffected

by congestion on the reverse path while TCP, which requires

more acknowledgment packets and is more directly affected by

the RTT of the connection reduces its throughput moderately.

V. EVALUATING RTFRC SPECIFIC ATTACKS

Since RTFRC is made robust against the earlier presented

attacks by design, this section focuses on new RTFRC-specific

attacks.

A. Resilience to nonce guessing

Our nonce scheme prevents the receiver from concealing a

loss event. Although the receiver can attempt to guess a nonce,

the probability of guessing the nonce correctly is small (1/2k

where k is the nonce size in bits). Furthermore, to provide

the receiver with a disincentive for nonce guessing, RTFRC

gives a sender the option of terminating the connection if the

receiver submits an incorrect nonce.

B. Resilience to excessive feedback

Sending feedback at a higher rate presents a potential oppor-

tunity for increasing the data transmission rate. For example,

since the sender doubles its transmission rate every RTT during

slow start as long as it receives feedback acknowledging all

data, more frequent feedback might increase the acceleration

of the transmission rate.

To evaluate whether excessive feedback affects RTFRC

throughput, we conduct ONL experiments in the same manner

and topology as presented earlier, where two RTFRC connec-

tions run in parallel with 5 TCP connections. We examine

the behavior of RTFRC when the feedback rate is varied.

Figure 10 plots the throughput of a excessive feedback RTFRC

flow to a normal RTFRC flow and an average of the 5
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Fig. 9. RTFRC, TFRC, and 5 TCP flows when additional TCP flows congest
the reverse path.

background TCP flows. The excessive feedback flow reports

feedback more frequently than normal by a factor plotted on

the x-axis. A comparison of these results with Figure 7 shows

that the observed values and their variation are not unusual.

It is obvious from these experiments that excessive feedback

does not enable the RTFRC receiver to boost its network

capacity consumption unfairly at the expense of well-behaving

cross traffic.

C. Feedback timing

Excessive feedback belongs to a larger class of attacks

where the receiver violates feedback procedures by sending

spurious feedback packets, changing feedback timing, or not

providing feedback at all. Although similar attacks can be

targeted at TFRC, we discuss them in the context of RTFRC

because a misbehaving TFRC receiver has easier means of

manipulating the sender.

RTFRC is immune to some feedback-timing attacks by

its design. For example, a feedback packet cannot be sent

before a packet has been delivered since it must include its

nonce value. Delaying or withholding feedback about packet

losses allows the receiver to postpone the loss detection at

the sender. Such loss concealment is only temporary since the

sender times out if no feedback is provided. Furthermore, its

short-term benefits are mitigated by the smoothness of RTFRC

transmission. Additionally, delayed feedback inflates the RTT

estimate at the sender and thereby decreases the transmission

rate; this detrimental effect offers a strong disincentive against

the attack.

The RTT value is computed as a weighted moving average

of the RTT value included in packets. In connections with

widely varying RTT, a receiver can artificially decrease the

RTT estimate by providing more frequent feedback during

low-RTT intervals and less frequent feedback during high-

RTT intervals. This deflated RTT estimate yields a higher

transmission rate. To launch this attack, the receiver needs to

track the RTT estimate reported by the sender in data packets.

Also, the receiver needs to be sufficiently precise in estimating

the true RTT and sufficiently prompt in adjusting the feedback

frequency; the last two constraints are difficult. In general,

we were unable to translate any temporary advantages from

feedback-timing attacks into tangible long-term benefits for a

selfish receiver. Furthermore, it is unclear how to completely
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Fig. 10. Excessive feedback attack.

eliminate this vulnerability: simply scaling the extent of the

update by how long has elapsed since the last update could

lead to unstable situations. Since this attack is not disastrous,

we prefer to ignore it and keep the protocol as simple as

possible.

VI. DISCUSSION

In the previous sections, we focused on protecting TFRC.

Now, we extend our study to discuss the general problem of

protecting congestion control protocols against a misbehaving

receiver. Our main objective is to provide efficient and fair

transmission of data. Achieving this goal involves two tasks:

(1) accurate measurement of the network state and (2) effec-

tive enforcement of fair bandwidth sharing among competing

flows. We start by considering both router-supported and

end-to-end approaches to solving the general problem. Then,

we analyze the degree of protection feasible with limited

congestion-control feedback from the receiver.

A. Router-centric techniques

A router is able to directly monitor the congestion state of

the network. However, it is resource intensive to observe all

flows to determine which flows are responsible for congestion.

Fair queuing schemes such as WDRR [24], WF2Q [25],

SCFQ [26], and SRR [27] place flows in independent queues

to ensure that they receive a fair share of the bandwidth as

determined by an idealized Generalized Processor Sharing

(GPS) [28] schedule. The only circumvention of this technique

is to open a number of parallel connections, a vulnerability

fundamental to flow-based identification and out of the scope

of this investigation. Another practical concern about fair

queuing schemes is their requirement to maintain per-flow

state. Due to this overhead, such schemes are not widely

deployed.

XCP [29], RCP [30], and SFQ [31] represent alternative

router-centric approaches that do not require per-flow state in

routers. To avoid this prohibitive overhead, SFQ approximates

WDRR by using a fixed number of aggregating queues instead

of a separate queue for each flow. In XCP and RCP, each router

monitors its traffic and inserts explicit congestion information

directly into forwarded packets. Since the router does not

transmit the congestion feedback information directly to the

sender but relays the information through the receiver, a mis-

behaving receiver can manipulate or simply ignore feedback
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to deceive the sender to transmit at an arbitrary rate. Hence,

these protocols need an additional mechanism for protection

against receiver misbehavior. One straightforward fix of this

problem is to require routers to send their congestion feedback

directly to the sender; however, the possibility of asymmetric

paths complicates this situation. Furthermore, direct feedback

to the sender from each router on a path will cause an

implosion effect where multiple control packets are sent in

response to a single data packet. A cryptographic approach

of signing control information (e.g., by using an intricate

nonce scheme such as Fanfare [32]) also requires a substantial

amount of overhead. Despite these obstacles, router-centric

approaches are inherently more effective since they do not

assume trustworthiness of end hosts.

B. End-to-end techniques

End-to-end approaches to protecting against receiver mis-

behavior must determine the state of the network through

external measurements. Generally, this task takes the form of

measuring the loss event rate. In such settings, it is common to

define fairness in terms of normal TCP behavior: anything that

behaves like TCP is considered to be fair. This definition lacks

rigor since TCP has many variants which behave differently.

However, it simplifies determination of a fair rate. Modeling

the behavior of TCP under various network conditions is an

area of ongoing research [33], [13]. As in TFRC, one can

use the TCP throughput equation to translate a loss event rate

directly into a fair rate.

The chief challenge with the reformulated problem is that

only the receiver has all the information needed to compute

the loss event rate correctly. As in our RTFRC solution, the

sender can include a nonce in each data packet and require that

the receiver returns the nonces to the sender. Also, a single

cumulative nonce can compactly represent multiple nonces

when the network is not congested. However, when losses

do occur, it becomes difficult to have concise feedback that

enables the sender to determine exactly the loss event rate at

the receiver. One straightforward solution is to require the re-

ceiver to echo every received nonce; this is what RTFRC does.

This feedback can be sent either in individual ACK packets

for each nonce or, with a significant reduction in overhead, by

aggregating multiple nonces into a single ACK (RTFRC does

the latter). In both cases, the amount of information included in

acknowledgments is directly proportional to the amount of sent

data; hence, both approaches are scalable. For most scenarios

this constitutes an acceptable solution.

To facilitate deployment of resilient congestion control

protocols, Kuzmanovic and Knightly propose that packets be

intentionally discarded as a backward-compatible alternative

to nonce-based protection [34]. Unfortunately, this degrades

protocol performance. Even if calculation of the transmission

rate ignores purposeful losses, it will still introduce introduce

substantial jitter due to packet retransmission. Furthermore,

waiting for retransmissions can cause buffers to fill. The

proposal also includes a sender-specific change that emulates

the behavior of the receiver in order to verify that the receiver

is acting as expected. Sadly, this method of verification is at

least as computationally expensive as performing calculations

at the sender in the first place. Furthermore, the two main

advantages of receiver centric protocols: that the sender is

simplified and that information only available to the receiver

can be incorporated in the protocol are both violated.

C. Protection with small feedback summaries

In network settings with asymmetric connections, multicast

sessions, and servers with many connections, it might be

useful to decrease the congestion feedback overhead. Although

RTFRC aggregates its feedback for many data packets into a

single ACK, the nonce for every packet is still communicated

individually, without any compression. On the other hand, a

compressed summary of nonces has the potential of reducing

the amount of feedback to less than a linear function of the

number of data packets.

An interesting research objective is to find an algorithm

allowing the sender to verify the loss rate for n sent packets

based on receiver feedback of less than O(n) bits. A general

technique such as the Shamir thresholding scheme [35] or

various error correction codes can be used to verify a specific

loss rate. However, verification of an arbitrary loss rate is a

more difficult challenge.

By only verifying the loss rate within a factor of 2, we

can acheive constant feedback size, O(1). Include log2 n + 1
independent nonce bits in the data packets, assuming that n
is a power of 2. For the sequence of first bits in the nonces,

include no redundancy. For the sequence of the i-th bit in the

nonces, include redundancy in the amount of 2i−1 using an

error correction code. The above can be accomplished through

the use of a Hamming code with a predetermined number of

bits known beforehand [36]. If no packets are lost, then a hash

of the first nonce bits can be used to verify this fact. If more

than 2i but less than 2i+1 packets are lost, then the receiver

can reconstruct the sequence of i-th bits in the nonces and

send a hash of this sequence back to the sender. If more than

2i+1 packets are lost, the sequence of i-th nonce bits cannot

be reconstructed because there is not enough redundancy.

Therefore, the solution enables verification of the loss rate

within a factor of 2 and minimizes the size of the feedback.

For multicast connections, precomputed hashes can be used to

verify reports from each receiver quickly. This technique can

be easily generalized to verify the loss rate to within a different

factor k simply by increasing the number of bits sent; the

generalization requires O(logk n) control bits in the forward

direction and O(1) for feedback.

When emulating TCP, one is commonly concerned about

the loss event rate, not the packet loss rate. Generally, enough

time passes between loss events to verify each individually.

To do this with minimal overhead, logically split a stream of

packets into sections. In each packet, include a piece of the

aggregate nonce for its section. If each section covers half

a RTT, then a loss event is detected by incorrect aggregate

nonces for two or less consecutive sections. This is reasonably

close to the original definition of a loss event as one or more

packet losses within one RTT. A closer approximation of this

definition can be obtained by decreasing the duration for each

section of packets.

The two previous schemes can be combined to allow the

sender to measure the loss event rate with a certain granularity

and verify it to within a factor of 2. Since loss events do

not always cause packet losses in consecutive sections, a

misbehaving receiver can underreport the loss rate slightly

so that enough sections still pass verification at the sender.

Nevertheless, this technique can prevent the most egregious

misbehavior and is useful for occasionally verifying that the

receiver is not grossly underreporting its loss event rate.

The amount of feedback bandwidth required to implement

this technique is smaller than that used to maintain a TCP
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connection.

VII. CONCLUSION

This paper investigated operation of TFRC in scenarios

where the receiver is untrustworthy. The modification of

feedback packets allows a misbehaving receiver to easily gain

an unfairly high transmission rate at the expense of compet-

ing traffic. We experimentally demonstrated the effectiveness

of attacks based on manipulating the loss event rate and

RTT. Then, we designed Robust TCP-Friendly Rate Control

(RTFRC), a TFRC variant resilient to the identified receiver

attacks. We also showed that RTFRC has similar properties

to TFRC in well-behaving environments and is resilient to

additional attacks targeted specifically at it. We extended the

protection techniques used in RTFRC to create a general

family of congestion control protocols. Finally, we presented

several protection methods with compressed feedback from

the receiver and analyzed the degree of resilience offered by

these methods.
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