©2024 1IEEE. This is the authors’ accepted version of the article. The original publication is to appear in IEEE Xplore:
13th IEEE International Conference on Cloud Networking (CloudNet 2024).

In-Band Quality Notification from Users to ISPs

Leonardo Peroni
UC3M, Spain

Sergey Gorinsky

Abstract—While ISPs (Internet service providers) strive to
improve QoE (quality of experience) for end users, end-to-end
traffic encryption by OTT (over-the-top) providers undermines
independent inference of QoE by an ISP. Due to the economic and
technological complexity of the modern Internet, ISP-side QoE
inference based on OTT assistance or out-of-band signaling sees
low adoption. This paper presents IQN (in-band quality notifi-
cation), a novel mechanism for signaling QoE impairments from
an automated agent on the end-user device to the server-to-client
ISP responsible for QoE-impairing congestion. Compatible with
multi-ISP paths, asymmetric routing, and other Internet realities,
IQN does not require OTT support and induces the OTT server
to emit distinctive packet patterns that encode QoE information,
enabling ISPs to infer QoE by monitoring these patterns in
network traffic. We develop a prototype system, YouStall, which
applies IQN signaling to ISP-side inference of YouTube stalls.
Cloud-based experiments with YouStall on YouTube Live streams
validate IQN’s feasibility and effectiveness, demonstrating its
potential for accurate user-assisted ISP-side QoE inference from
encrypted traffic in real Internet environments.

Index Terms—End user, QoE, ISP, QoE-impairment inference,
OTT provider, end-to-end traffic encryption, in-band signaling.

I. INTRODUCTION

ISPs (Internet service providers) have a vested interest in
improving QoE (quality of experience) for end users. Even
mid-path ISPs, which do not have a direct relationship with
end users, aim to enhance QoE to maintain a positive business
reputation, attract and retain customers and peers, and remain
competitive in Internet connectivity markets. The means avail-
able to ISPs for mitigating QoE impairments include traffic
shaping, flow prioritization, and rerouting [1], [2].

To mitigate QoE impairments, ISPs first have to infer
them. Traditionally, ISPs infer QoE independently through
techniques such as per-flow DPI (deep packet inspection),
which examines the payloads of packets flowing through their
routers. However, OTT (over-the-top) providers of streaming
and other services increasingly adopt end-to-end traffic encryp-
tion. For example, YouTube utilizes the QUIC (quick UDP
Internet connections) protocol [3] to encrypt its traffic. Be-
cause end-to-end encryption renders DPI-based QoE inference
ineffective, researchers propose various alternative methods
for extracting QoE insights from encrypted traffic [4]-[11].
Despite the extensive research, independent ISP-side solutions
still face challenges in achieving high performance.

One way for an ISP to improve on independent QoE
inference is by receiving assistance from the OTT provider.
OTT providers run their clients on end-user devices or use
web browsers to engage directly with users through interactive
interfaces. OTT hypergiants like Netflix leverage vast cloud

IMDEA Networks Institute, Spain

Farzad Tashtarian
Alpen-Adria Universitit Klagenfurt, Austria

and edge infrastructures and operate their own private wide-
area networks to stream content from globally distributed
locations [12]. While OTT providers are well-positioned to
support ISP-side QoE inference with existing technical capa-
bilities [13], [14], they rarely do so in practice. Instead, OTT
providers often cite fairness concerns to advocate for network
neutrality regulations [15], which typically restrict ISPs from
engaging in application differentiation, except during transient
congestion, and generally limit them to supplying basic Inter-
net connectivity.

Whereas OTT providers’ reluctance to assist ISPs in QoE
inference is understandable from the “tussle in cyberspace”
perspective [16], end users have a clear incentive to help ISPs
improve QoE for specific applications [17]. Existing solutions
for user-assisted QoE inference include ALTO (application-
layer traffic optimization) [18] and P4P (proactive network
provider participation for P2P) [19]. These proposals support
out-of-band signaling of QoE information from an end user to
an ISP but do not gain widespread adoption.

To understand the low adoption of out-of-band QoE signal-
ing, one has to consider the complex realities of the modern
Internet. The tiered Internet structure contains thousands of
ISPs providing global connectivity for billions of end users
who consume OTT services. The complex structure features
multi-ISP paths [14] and weaves together entities of different
kinds via diverse but typically bilateral relationships.

Figure 1 illustrates a representative scenario where a con-
gested tier-2 ISP acts as a transit customer [20] of a tier-1
ISP [21], buys partial transit [22] from another tier-1 ISP,
sells transit to two tier-3 ISPs, and peers with a tier-2 ISP via a
private interconnection [23]. It also purchases a remote-peering
service [24] to reach an IXP (Internet exchange point) [25] and
publicly peers at this IXP with another tier-2 ISP. ISP-level
routing is asymmetric, and an OTT service operates its global
private network, receiving client requests through one ISP and
responding through another. When congestion occurs in a mid-
path ISP and impairs QoE, the end user cannot determine
which ISP to contact through out-of-band signaling to mitigate
the congestion [26]. Additionally, the congested mid-path ISP
is unaware of the affected users, and hence cannot contact
them via out-of-band communication, because NAT (network
address translation) [27] alters network flow identifiers.

While the economic and technological complexities of
the modern Internet undermine adoption of seemingly well-
grounded approaches, such as OTT-assisted inference and out-
of-band signaling of QoE, this paper explores a user-assisted
ISP-side QoE inference alternative that relies on IQN (in-band

@ IQN’s end-user agent -+~ > client-to-server flow & NAT IXP
B IQN’s ISP agent <---—server-to-client flow /__\ISP 3i&congestion

OTT provider

A
[}
tier-1 ISPs/ ,' \W/ \
y i

o,

tier-2 ISPs \

. <
sessrs[\ [S\ [\ [

end-user device [.<- OTT client] ﬁ ‘end user

Fig. 1: IQN signaling of QoE from the end user of an
OTT service to server-to-client ISPs in the economically and
technologically complex Internet ecosystem.

quality notification), a novel mechanism for in-band signaling
of QoE from an automated end-user agent to server-to-client
ISPs, without requiring any OTT support. We derive the IQN
design from principles of OTT independence, user simplicity,
and Internet compatibility. Our chief insight is that OTT clients
offer interactive features that allow an application on the end-
user device to programmatically trigger a distinct pattern in
server-to-client transmissions. Leveraging this insight, IQN’s
end-user agent induces the OTT server to transmit distinctive
packet patterns encoding QoE, and a server-to-client ISP runs
IQN’s automated ISP agent in its routers to infer the encoded
QoE information by observing these patterns in monitored
network traffic. Akin to SOS, an IQN signal serves as an
emergency notification to unknown ISPs capable of mitigating
transient QoE-impairing congestion.

To assess the feasibility and performance of IQN signaling
in a real Internet environment, we instantiate IQN in a system
prototype. After our preliminary studies show IQN’s effective-
ness for three major OTT services and different QoE factors,
we develop a prototype for inferring stalls of the QUIC-
based YouTube service. This system, named YouStall, emits
IQN signals by toggling the autoplay switch in YouTube’s
interface. The prototype incorporates an Amazon EC2 (elastic
compute cloud) instance [28], which emulates an ISP router
executing IQN’s ISP agent to infer stalls and estimate their
duration. IQN-assisted QoE inference at the router incurs less
overhead compared to the traditional independent ISP-side
QoE inference based on per-flow data-plane DPI. Additionally,
YouStall leverages IQN’s end-user agent for user-side stall
detection by periodically capturing screenshots and identifying
the spinning icon in YouTube’s playback area.

Our experiments with YouStall on YouTube Live [29]
streams of three genres corroborate the promise of IQN
signaling. For example, while the average stall duration across
the three genres exceeds 1.4 s, IQN-assisted ISP-side inference
estimates the duration of significant stalls (those lasting at
least 400 ms) with an average MAE (mean absolute error)

and RMSE (root mean square error) of 231 and 288 ms, re-
spectively. The experiments also evaluate YouStall’s parameter
sensitivity and overhead.

Overall, this paper makes the following main contributions:

1) We propose IQN, a novel mechanism for automated
in-band signaling of QoE from the end user of an
OTT service to server-to-client ISPs responsible for
QoE-impairing congestion. IQN supports accurate ISP-
side QoE inference despite end-to-end traffic encryption,
asymmetric routing, and other Internet realities.

2) The paper presents YouStall, a system prototype that
instantiates IQN by toggling YouTube’s autoplay switch,
enabling ISP-side inference of YouTube stalls.

3) Through cloud-based experiments on YouTube Live
streams, we show IQN’s feasibility and effectiveness.

II. MOTIVATION AND PRINCIPLES

Our paper proposes a novel mechanism for ISP-side QoE in-
ference. Although OTT providers, which directly interact with
end users, are in the best position to assist ISPs in this task,
real-world evidence shows little interest from OTT services in
cooperating with ISPs on QoE measurement and improvement.
On the contrary, OTT providers often complicate independent
QokE inference by an ISP through actions like end-to-end traffic
encryption. Given this reality, we argue that an effective ISP-
side QoE inference mechanism should not expect support from
the OTT service, leading to our first design principle:

Principle 1 (OTT independence): The mechanism should
operate without any support from the OTT provider.

Since end users are the primary beneficiaries of QoE
improvement, they have an incentive to assist ISP-side QoE
inference [17]. However, this assistance should align with the
low-effort role typical of casual users and avoid placing a
significant burden on them:

Principle 2 (User simplicity): The effort required by the
mechanism from the end user should be minimal.

While we allow for limited support from the end user, the
complex structure of the Internet poses practical challenges for
leveraging this support in ISP-side QoE inference. As Figure 1
illustrates, NAT might cause a network flow to change its
identity as it traverses the Internet. Due to asymmetric inter-
domain routing in the tiered Internet structure with multi-
ISP paths [14], an OTT server might receive client requests
through one ISP and respond through another. Consequently,
the ISP responsible for QoE-impairing congestion, and capable
of resolving the issue, might be off the client-to-server path.
This requires end-user support to reach ISPs along the server-
to-client path. Hence, the QoE inference mechanism should
account for such practical Internet constraints:

Principle 3 (Internet compatibility): The mechanism should
function effectively within the realities of the current Internet,
such as multi-ISP paths, asymmetric routing, and NAT.

III. IN-BAND QUALITY NOTIFICATION
A. General IQN mechanism

The design principles outlined in Section II guide our novel
approach to QoE inference by an ISP. While mainstream ef-
forts pursue independent ISP-side QoE inference, they struggle
to accurately infer QoE from encrypted traffic [4], [S]. As per
Principle 1, OTT providers are unlikely to remove encryption
or assist ISPs in inferring QoE through other means. Therefore,
we explore ISP-side QoFE inference assisted by the end user.

The key issue addressed in this paper is QoE signaling
from end users to ISPs. Although ALTO [18], P4P [19], and
other cross-layer designs explicitly support such signaling,
we attribute their low adoption to a mismatch between their
out-of-band nature and the Internet’s structural complexity.
With multiple tiers of ISPs, multi-ISP paths, and congestion
occurring before the last-hop ISP, the end user is typically
unaware of which ISP is responsible for QoE-impairing con-
gestion [26]. Similarly, an ISP is often unaware of the specific
end users due to NAT and other modern Internet realities.
Since the end user generally does not know which ISPs to
notify about QoE impairments via an out-of-band mechanism,
our research focuses on in-band signaling.

According to Principle 3, the signaling mechanism should
be compatible with asymmetric routing and notify ISPs along
the server-to-client path of the OTT service. One possibility
is for the OTT server to reflect in-band signals received from
the end user, similar to how network cookies facilitate network
neutrality [17]. However, this support from the OTT provider
would violate Principle 1. Hence, we seek a mechanism for
in-band signaling to server-to-client ISPs without relying on
OTT support.

End users typically exert low effort when consuming ser-
vices, often limited to installing and running applications
like an OTT client. For example, ECN (explicit congestion
notification) [30], which transmits in-band congestion signals
from networks to end devices for transport-layer reactions,
operates transparently to end users and their applications. In
conformity with Principle 2, we aim to maintain this minimal
level of effort, requiring only the installation of an agent on
the end-user device, which automatically signals QoE.

The principle-guided approach leads to the design of ION,
a new mechanism for in-band signaling of QoE information
from an automated end-user agent to server-to-client ISPs,
without relying on OTT support. IQN’s key insight is that
each major OTT service provides a rich interactive interface,
allowing the end user to issue commands through the OTT
client and receive responses from the OTT server. IQN’s end-
user agent leverages this interface to programmatically send
a series of commands that induce the OTT server to transmit
a distinctive packet pattern, aligned with the OTT service’s
internal logic, to the client. This packet pattern encodes QoE
information, which the server-to-client ISPs infer by detecting
the pattern in the network flow.

While this paper primarily focuses on QoE signaling from
the end user to server-to-client ISPs, which is our most

innovative contribution, we also examine other, less novel but
important, aspects of user-assisted ISP-side QoE improvement.
For example, the end-user agent automatically detects QoE by
leveraging again the OTT client’s interface.

For ISP-side mitigation of inferred QoE impairments, we
consider well-established techniques such as traffic prioritiza-
tion [1] and rerouting [2]. For example, when an ISP infers
a QoE impairment in a network flow on a congested link, it
assigns higher priority to that flow. If multiple server-to-client
ISPs infer the same impairment, they respond independently
based on their own understanding of potential local causes,
without coordination. IQN acts like a distress signal to any ISP
capable of resolving the transient QoE-impairing congestion,
an emergency rather than a persistent issue.

B. IQON instance in the YouStall system

To evaluate the feasibility and accuracy of the IQN mech-
anism in real Internet environments, we instantiate it in a
system prototype. Our preliminary analysis of Amazon Prime
Video, Netflix, and YouTube reveals that their client interfaces
offer interactive features, such as an autoplay switch and
audio language selection, that support effective IQN signaling.
In line with the scenarios targeted by IQN, we develop the
prototype for YouTube, which encrypts its end-to-end traffic
in QUIC packets. The system notifies ISPs about playback
stalls, a prominent QoE influence factor [31]. We refer to the
prototype as YouStall.

User-side QoE signaling. To issue IQN signals via
YouTube’s interface, YouStall utilizes the autoplay switch,
which determines whether the next video plays automatically
after the current one finishes. We select this feature to avoid
disrupting the user experience. The end-user agent emits an
IQN signal by toggling the autoplay switch programmatically
an even number of times, with intervals shorter than 5 ms
between toggles. This sequence of n toggles occurs too quickly
for human perception and concludes with both the cursor and
autoplay switch in their original positions. By default, we set
n to 4 as the smallest even number that is unlikely to occur
naturally in user behavior while still triggering a distinctive
pattern in server-to-client transmissions.

The end-user agent issues an n-toggle IQN signal whenever
its QoE check, conducted at intervals of p (set to 200 ms
by default), detects a playback stall. For each toggle in the
IQN signal, YouTube’s client transmits an HTTP/3 (hypertext
transfer protocol version 3) POST request to the YouTube
server, which updates its autoplay settings and responds with
an HTTP/3 200 OK” status over QUIC. Although a monitored
network flow might include other QUIC packets that contain
encrypted ”200 OK” confirmations, a quick series of such
packets is a rare pattern.

ISP-side QoE inference. To identify this distinctive pattern
in each monitored network flow, an ISP runs IQN’s ISP agent
on the data plane of its routers. The ISP agent identifies
QUIC-encrypted candidate packets sized between 1,180 and
1,288 bytes, which might contain 200 OK” confirmations.
Because some of these packets might be unrelated to an

IQN signal, the ISP agent has to discern and filter them out.
Additionally, the client-server-agent path might experience
packet loss, reordering, and significant jitter due to in-network
and end-host processing [32], causing variations in the count
and timing of packets representing an IQN signal upon its
arrival at the ISP agent.

The algorithm for stall inference operates in two modes:
out-of-stall and in-stall. In the out-of-stall mode, the ISP agent
monitors packet arrival times by sliding a stall-start window
over them. It infers the start of a new stall when the window
contains at least n packet arrivals. The algorithm registers the
first arrival time as start time s of the stall and switches to the
in-stall mode. In the in-stall mode, it slides a stall-end window
over packet arrival times and infers the end of the stall when
the window contains fewer than n packet arrivals. The ISP
agent records the first of these times as end time e of the
stall, estimates the stall duration as e — s, and then switches
back to the out-of-stall mode.

We keep the algorithm simple by sizing both stall-start and
stall-end windows relative to signaling interval p, instead of
introducing new independent parameters. We size the stall-
start window to w, = 37”, i.e., 50% longer than interval p.
Despite potential timing distortions along the delivery path,
we expect this duration to be long enough for n packets to
arrive and inform the ISP agent about the onset of a stall. On
the other hand, w, = 3’2—” is short enough to avoid inferring
a stall spuriously due to the arrival of unrelated candidate
packets. We empirically set the stall-end window to w. = 4p
to reduce false negatives, which might occur if the end-user
agent fails to emit an IQN signal during an actual stall.
Because unrelated candidate packets are infrequent, they do
not interfere with inferring the end of a stall when w, is as
long as 4p. Additionally, setting w, = 4p ensures that this
window is shorter than the typical gaps between actual stalls,
thus preventing the inference of multiple stalls as one.

Per-flow tracking of packet sizes and arrival times in
IQN-assisted QoE inference imposes less overhead than the
stateful packet processing required for traditional data-plane
DPI, which advanced routers already support for independent
ISP-side QoE inference and more complex tasks [33], [34].
Therefore, we expect the proposed method to scale to ISPs in
the Internet core.

User-side QoE detection. To signal QoE, the end-user
agent has to detect it first. One possibility is to leverage
YouTube’s stats for nerds”, a feature that provides end
users with detailed QoE information. We demonstrate IQN’s
feasibility and effectiveness in more general settings, where
an OTT provider does not disclose detailed QoE metrics and
instead offers limited visual cues, such as the spinning icon
in the center of YouTube’s playback area during a stall, to
indicate temporary QoE impairments.

YouStall’s end-user agent detects stalls by periodically
capturing a screenshot of the playback area at interval p. If
the central part of two consecutive screenshots changes while
the periphery remains the same, the end-user agent attributes
the change to the spinning icon and infers a potential stall.

To avoid sending spurious IQN signals, the end-user agent
strives to minimize false positives by incorporating logic to
filter out fictitious stall detections caused by user actions, such
as clicking the progress bar. While the end-user agent does not
detect stalls shorter than p, this feature aligns with YouStall’s
aim to inform ISPs about longer stalls that noticeably disrupt
end-user QoE and are resolvable by ISPs.

ISP-side QoE improvement. We develop the YouStall
prototype for IQN-assisted QoE inference primarily to evaluate
the effectiveness of IQN signaling, which is our main inno-
vation. QoE improvement via in-network techniques, such as
flow prioritization and rerouting, is well-researched and offers
well-known performance benefits. For example, [35] demon-
strates that these techniques enable ISPs to effectively mitigate
temporary QoE impairments, including stalls, when informed
through out-of-band signaling. Enhancing YouStall with simi-
lar QoE-improving mechanisms is a direction for future work.

YouStall implementation. We implement YouStall in
Python 3.10. YouStall’s end-user agent utilizes Pillow [36]
for image manipulation and sets the PAUSE parameter of
PyAutoGUI [37] to O for rapid toggling of the autoplay switch.
The ISP agent employs pyshark [38] for real-time packet
capture and analysis. This paper openly releases its code and
experimental configurations on GitHub [39].

IV. EVALUATION
A. Experimental setup

IQN’s end-user agent runs on a Madrid-based Intel i7
machine (six cores, 2.6 GHz CPU, 16 GB RAM) with Linux
Ubuntu 22.04.4 LTS. Located in Frankfurt, approximately
1,500 km away, an EC2 instance (one core, 2.4 GHz Intel
Xeon CPU, 1 GB RAM) with Linux Ubuntu 24.04.4 LTS
emulates IQN’s ISP agent. We tunnel the end-user device’s
Internet traffic to the EC2 instance using OpenVPN [40]. An
automated script plays YouTube Live [29] video streams from
the news, music, and sports genres on the end-user device
through the Google Chrome browser.

Since YouTube stalls are typically infrequent, our evaluation
induces 100 stalls per genre by fixing the video resolution
at 720p and using tcconfig [41] to limit the YouTube traffic
to 1 Mbps [42]. We collect ground truth on the stalls by
employing Selenium [43] to track the ytp-spinner tag, which
renders the spinning icon in YouTube’s interface. We synchro-
nize the timelines of the stalls and captured screenshots. To
assess memory and CPU (central processing unit) overhead,
we utilize psutil [44].

B. Experimental results

Figure 2a illustrates YouStall’s operation. The horizontal
magenta segments indicate actual stalls, which prompt IQN
signaling from the end-user agent. Each black dot represents
the arrival of a candidate packet at the ISP agent. Between
stalls, the ISP agent observes infrequent candidate packet
arrivals unrelated to IQN signaling. During a stall, the ISP
agent detects a higher arrival rate of candidate packets and

actual stalls wn 1 w 0.1 =TT
- -= = T .. © r i I .-'-Tfﬂﬂ
. 7 #0.75 A $0.75 - 257
candidate packets, .+ w e T news 4 L
(4 o i ° i P LT e news
. < 0.50 § ——- music - 0.50 P
/ S . k) o --- music
. e e . S 0254 - sports o 0.25 1 e —-= sports
: : |nfe|rred stallls : T 0 —— actual stalls| & 0 g
T T T T T T T
0 10 20 30 40 0 2000 4000 6000 0 200 400 600 800
Time, s Stall duration, ms Absolute duration error, ms

(a) An operational example

(b) Duration of inferred vs. actual stalls

(c) Duration error for significant stalls

Fig. 2: IQN signaling from the end user enables accurate QoE inference by the ISP along YouTube’s server-to-client path.

wm news music XN sports
) 100 =~ 100
75 R 75
3 50 T 50
g 25 | & 25
o

0 2
200 400 800 120016002000
Sampling period p, ms

0 2
200 400 800 120016002000
Sampling period p, ms

Fig. 3: Precision and recall of user-side QoE detection.

correctly infers the stall. Figure 2a depicts the inferred stalls
as horizontal orange segments.

Figure 2b shows the inferred stall-duration distributions for
the news, music, and sports genres, with the respective ground-
truth distributions plotted as solid magenta lines. Although
the actual stall-duration distributions for the three genres are
distinct (with averages of 1.1, 2.6, and 0.7 s), the inferred and
actual distributions for each genre are very similar, indicating
that YouStall accurately infers stall-duration distributions.

Since we experiment with YouStall in real-world conditions,
where the path between the two agents introduces substantial
jitter of up to 1 s, evaluating the inference accuracy for
each stall is challenging. We utilize the end-user and ISP-
agent timelines to match actual and inferred stalls within a
window of 1 s. For significant stalls lasting at least 400 ms,
we confidently identify 238 one-to-one mappings between
inferred and actual stalls across the three genres (from a total
of 300 actual stalls). The average MAE and RMSE for these
238 mappings are 231 and 288 ms, respectively. Figure 2c
depicts the absolute error of the inferred stall duration for
each genre. These results suggest that YouStall estimates the
duration of significant stalls with relatively low error.

Based on the synchronized timelines of actual stalls and
captured screenshots, Figure 3 presents the precision and recall
of YouStall’s user-side QoE detection. The sampling interval
has minimal impact on these metrics. The end-user agent
detects stalls with nearly 100% precision, effectively avoid-
ing spurious IQN signals. However, recall is lower because
YouStall, by design, does not detect stalls shorter than p.
Because shortening p increases the number of detected stalls,
we set the default sampling interval to the shortest examined
value, p = 200 ms.

Figure 4 presents the overhead of YouStall’s end-user agent,
based on four runs with 10 actual stalls. The CPU and memory
consumption are approximately 12% and 200 MB, respec-

2 3 4 5 6

3 5
n, number of toggles n, number of toggles

Fig. 4: Overhead of YouStall’s end-user agent.

tively. This overhead is manageable and does not significantly
depend on the number of toggles constituting an IQN signal.

V. RELATED WORK

Independent ISP-side QoE inference. [4] identifies video
segments in encrypted traffic by examining packet sizes and
timing. Based on combinatorial matching, [5] infers video
resolution when QUIC multiplexes video and audio content.
[6]-[8] employ decision trees, random forests, and convo-
Iutional neural networks, respectively, to infer various QoE
metrics. Other solutions for QoE detection from encrypted
traffic include [9]-[11]. Despite the growing effectiveness
of learning methods, independent QoE inference by an ISP
still struggles to achieve high performance. In contrast, IQN
enables accurate user-assisted ISP-side QoE inference.

ISP-OTT cooperation. Collaboration with OTT providers
promises tangible benefits for ISPs. While [13] explores ISP-
OTT cooperation in software-defined networking to jointly
optimize intra-domain and inter-domain routing, [14] enables
cooperation between OTT hypergiants and remote ISPs with-
out requiring direct peering. Whereas practice shows that OTT
providers are reluctant to assist ISPs in QoE inference, we
design IQN to operate without any explicit assistance from
the OTT provider.

QoE signaling from end users. While ALTO [18] and
P4P [19] enable QoE signaling from the end user to an ISP,
the out-of-band nature of these mechanisms is only weakly
compatible with modern Internet realities, such as multi-ISP
paths and NAT. In-band signaling via network cookies [17]
differs from IQN by requiring support from the OTT server.

In-band notification. Similarly to IQN, ECN [30] is an
in-band mechanism for conveying congestion-related informa-
tion. Whereas ECN sends congestion signals from networks to
end devices for transport-layer reactions and does not distin-
guish between applications, IQN enables an end-user agent

to notify networks about congestion-triggered application-
specific QoE impairments. Unlike IQN, which functions as
an emergency signal for transient QoE-impairing congestion,
the in-band signaling in RD (rate-delay) network services [45]
supports persistent differential treatment of application classes
that prioritize either high throughput or low latency for their
network flows.

User-side QoE detection. While VideoEye [46] detects
QoE offline from recordings of the OTT client’s screen,
Tero [47] extracts QoE from thumbnails in gaming footage.
In contrast, our YouStall prototype captures screenshots to
detect and signal QOoE in real time. While [48] evaluates how
user interactions with an OTT client affect QoE of encrypted
video sessions, YouStall leverages the OTT client’s interface
to induce a distinctive pattern of packet transmission from the
OTT server.

ISP-side QoE improvement. ISP-side methods for QoE
management include traffic prioritization [1] and rerouting [2].
We envision IQN operating in conjunction with similar
application-aware traffic engineering and prioritization tech-
niques, rather than relying on more static approaches to traffic
management, such as the MED (multi-exit discriminator)
attribute in BGP (border gateway protocol) [49].

VI. DISCUSSION AND CONCLUSION

Deployment and robustness. We expect IQN’s end-user
and ISP agents being developed and maintained by an ISP,
an ISP consortium, or a third party. This maintenance would
involve updating the agents in response to changes made by
the OTT provider to its client’s interface.

Interference by the OTT provider. Beyond simply not
assisting, OTT providers might deliberately disrupt IQN sig-
naling. Such actions would frustrate IQN-agent developers
and ISPs, potentially leading to the introduction of neutrality
regulations for OTT providers, similar to those that currently
govern ISPs.

OTT-specific IQN instantiation. OTT services differ sig-
nificantly in their interface features and operation, potentially
requiring a tailored IQN instance for each service. Since the
number of OTT hypergiants is relatively small, maintaining
separate IQN instances for all of them appears scalable.

Future work. The primary contribution of this paper is IQN
signaling, which enables accurate ISP-side QoE inference from
encrypted traffic without any support from OTT providers.
While our preliminary results substantiate IQN’s promise, this
pioneering work opens up numerous directions for further
research, such as encoding additional QoE factors into IQN
signals and improving QoE inference from observed packet
patterns. We also plan to enhance the YouStall prototype with
QoE-impairment mitigation mechanisms and evaluate their
performance gains in real large-scale network environments.

ACKNOWLEDGMENTS

This research is supported in part by project PID2022-
1405600B-100 (DRONAC), funded by MICIU/AEl/
10.13039/501100011033 and ERDF, EU, and the Austrian

Federal Ministry for Digital and Economic Affairs, National
Foundation for Research, Technology and Development, and
Christian Doppler Research Association with project Christian
Doppler Laboratory ATHENA (https://athena.itec.aau.at/).

REFERENCES

[1] A. Nikravesh, D. K. Hong, Q. A. Chen, H. V. Madhyastha, and Z. M.
Mao, “QoE Inference Without Application Control,” in Internet-QoE,
2016.

[2] M. Apostolaki, A. Singla, and L. Vanbever, “Performance-Driven Inter-
net Path Selection,” in SOSR, 2021.

[3] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport Protocol:
Design and Internet-Scale Deployment,” in SIGCOMM, 2017.

[4] S. Xu, S. Sen, and Z. M. Mao, “CSI: Inferring Mobile ABR Video
Adaptation Behavior Under HTTPS and QUIC,” in EuroSys, 2020.

[5] Y. Zhao, H. Wu, L. Chen, S. Liu, G. Cheng, and X. Hu, “Identifying
Video Resolution from Encrypted QUIC Streams in Segment-Combined
Transmission Scenarios,” in NOSSDAV, 2024.

[6] M. H. Mazhar and Z. Shafiq, “Real-Time Video Quality of Experience
Monitoring for HTTPS and QUIC,” in INFOCOM, 2018.

[7]1 C. Gutterman, K. Guo, S. Arora, T. Gilliland, X. Wang, L. Wu, E. Katz-
Bassett, and G. Zussman, “Requet: Real-Time QoE Metric Detection for
Encrypted YouTube Traffic,” ACM TOMM, vol. 16, no. 2s, pp. 1-28,
2020.

[8] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, “DeepQoE: Real-
Time Measurement of Video QoE from Encrypted Traffic with Deep
Learning,” in IWQoS, 2020.

[9] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “ViCrypt to the
Rescue: Real-Time, Machine-Learning-Driven Video-QoE Monitoring
for Encrypted Streaming Traffic,” IEEE TNSM, vol. 17, no. 4, pp. 2007—
2023, 2020.

[10] T. Sharma, T. Mangla, A. Gupta, J. Jiang, and N. Feamster, “Estimating
WebRTC Video QoE Metrics Without Using Application Headers,” in
IMC, 2023.

[11] Tisa-Selma, A. Bentaleb, and S. Harous, “Inferring Quality of Experi-
ence for Adaptive Video Streaming over HTTPS and QUIC,” in IWCMC,
2020.

[12] P. Gigis, M. Calder, L. Manassakis, G. Nomikos, V. Kotronis, X. Dim-
itropoulos, E. Katz-Bassett, and G. Smaragdakis, “Seven Years in the
Life of Hypergiants’ Off-Nets,” in SIGCOMM, 2021.

[13] Y. Zhao, A. Saeed, M. H. Ammar, and E. W. Zegura, “Unison: Enabling
Content Provider/ISP Collaboration Using a vSwitch Abstraction,” in
ICNP, 2019.

[14] C. Munteanu, O. Gasser, 1. Poese, G. Smaragdakis, and A. Feldmann,
“Enabling Multi-Hop ISP-Hypergiant Collaboration,” in ANRW, 2023.

[15] V. Stocker, G. Smaragdakis, and W. Lehr, “The State of Network
Neutrality Regulation,” SIGCOMM CCR, vol. 50, no. 1, pp. 45-59, 2020.

[16] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle in
Cyberspace: Defining Tomorrow’s Internet,” IEEE/ACM ToN, vol. 13,
no. 3, pp. 462475, 2005.

[17] Y. Yiakoumis, S. Katti, and N. McKeown, “Neutral Net Neutrality,” in
SIGCOMM, 2016.

[18] S. Shalunov, R. Wendy, R. Woundy, S. Previdi, S. Kiesel, R. Alimi,
R. Penno, and Y. R. Yang, “Application-Layer Traffic Optimization
(ALTO) Protocol,” IETF RFC 7285, 2014.

[19] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz,
“P4P: Provider Portal for Applications,” in SIGCOMM, 2008.

[20] L. Gao, “On Inferring Autonomous System Relationships in the Inter-
net,” IEEE/ACM ToN, vol. 9, no. 6, pp. 733-745, 2001.

[21] S. Hasan and S. Gorinsky, “Obscure Giants: Detecting the Provider-Free
ASes,” in IFIP Networking, 2012.

[22] V. Valancius, C. Lumezanu, N. Feamster, R. Johari, and V. Vazirani,
“How Many Tiers? Pricing in the Internet Transit Market,” in SIG-
COMM, 2011.

[23] V. Giotsas, G. Smaragdakis, B. Huffaker, M. Luckie, and k. claffy,
“Mapping Peering Interconnections to a Facility,” in CoNEXT, 2015.

[24] I Castro, J. C. Cardona, S. Gorinsky, and P. Francois, “Remote Peering:
More Peering without Internet Flattening,” in CoNEXT, 2014.

[35]

[36]

[37]

B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger,
“Anatomy of a Large European IXP,” in SIGCOMM, 2012.

L. L. Peterson and B. S. Davie, Computer Networks: A Systems
Approach. Morgan Kaufmann, 2021.

C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely Outsourcing Middleboxes to the Cloud,” in NSDI, 2016.
Amazon Web Services, “Amazon EC2,” https://aws.amazon.com/ec2,
2024.

Google LLC YouTube, “YouTube Live,” https://www.youtube.com/live,
2024.

K. K. Ramakrishnan, S. Floyd, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” IETF RFC 3168, 2001.
R. Schatz, T. HoBfeld, and P. Casas, “Passive YouTube QoE Monitoring
for ISPs,” in IMIS, 2012.

V. Arun, M. Alizadeh, and H. Balakrishnan, “Starvation in End-to-End
Congestion Control,” in SIGCOMM, 2022.

L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “nDPI: Open-
Source High-Speed Deep Packet Inspection,” in IWCMC, 2014.

J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon, and
J. M. Smith, “DeepMatch: Practical Deep Packet Inspection in the Data
Plane Using Network Processors,” in CoNEXT, 2020.

T. Tran, D. Gageot, C. Neumann, G. Bichot, A. Tlili, K. Boutiba, and
A. Ksentini, “On the Benefits and Caveats of Exploiting Quality on
Demand Network APIs for Video Streaming,” in NOSSDAV, 2024.

J. A. Clark, “pillow 10.3.0,” Python Sofware Foundation,
https://pypi.org/project/pillow/, 2024.

A. Sweigart, ‘“Pyautogui 0.9.54,)” Python Software Foundation,
https://pypi.org/project/Py AutoGUI/, 2024.

[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]
[48]

[49]

KimiNewt, “pyshark 0.6,” Python Software
https://pypi.org/project/pyshark/, 2024.

L. Peroni, S. Gorinsky, and F. Tashtarian, “IQN and YouStall: Code
and Experimental Configurations,” GitHub, https://github.com/Leo-
r0jo/IQN_YouStall_Code_CloudNet_2024, 2024.

OpenVPN Inc., “OpenVPN,” https://openvpn.net/, 2024.

T. Hombashi, “tcconfig 0.7.0al,” Python Sofware Foundation,
https://pypi.org/project/tcconfig/0.7.0al/, 2024.

J. Liu, D. Lerner, J. Chung, U. Paul, A. Gupta, and E. Belding,
“Watching Stars in Pixels: The Interplay of Traffic Shaping and YouTube
Streaming QoE over GEO Satellite Networks,” in PAM, 2024.

Foundation,

Python Software Foundation, “Selenium 4.22.0,7
https://pypi.org/project/selenium/, 2024.
G. Rodola, “psutil 6.0.0,” Python Software Foundation,

https://pypi.org/project/psutil/, 2024.

M. Podlesny and S. Gorinsky, “Leveraging the Rate-Delay Trade-Off
for Service Differentiation in Multi-Provider Networks,” IEEE JSAC,
vol. 29, no. 5, pp. 997-1008, 2011.

S. Xu, E. Petajan, S. Sen, and Z. M. Mao, “What You See Is What
You Get: Measure ABR Video Streaming QoE via On-Device Screen
Recording,” in NOSSDAV, 2020.

C. Alvarez and K. Argyraki, “Learning a QoE Metric from Social Media
and Gaming Footage,” in HotNets, 2023.

1. Bartolec, “Performance Estimation of Encrypted Video Streaming in
Light of End-User Playback-Related Interactions,” in MMSys, 2021.

Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
IETF RFC 4271, 2006.

