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Introduction  Smooth fair lossless transmission at This pattern of packet transmissions is the smoothest
high bitrates is an aspiration for many explicit and delapossible under asynchronous congestion control where
driven congestion control protocols [1]-[4]. Potentiadlistributed senders of different flows do not deliberately
benefits of such transmission include short queues asuhedule packets to arrive at a shared link at non-
no data loss at bottleneck links. These properties are paverlapping times. After the last flow arrives, the imper-
ticularly important for interactive multimedia and othefect alignment of the flows creates a queue oscillation
applications that would suffer from excessive queuingattern that repeats with peridd
delays at shared network links. We consider three smooth distributions of flow interar-

In this paper, we present a model for investigatival times: Exponential, Uniform, and Pareto. All three
ing lower bounds on queuing under smooth congestidrstributions have the same average value:
control with overprovisioned buffers. We consider an D T
idealized protocol where all flows always transmit at =T =W 3)

equal rates. The ideally smooth transmission does A ihe N flows are expected to arrive over a time
eliminate queuing altogether because packets Ofdiﬁer%rval that has the same duratidh as the period

flows might arrlvg to a node S|multa}nequgly _du_e t8f the steady-state queue oscillations. The variances of
asynchronous arrivals of the flows, which is intrinsic Qe distributions are(l)2 1 (1)2 and L (1)2
N 1

i X ' 3\N ‘ k(k—2) \N
computer networks. A prominent feature of our model 'rsespectlvely, wheré — 9.1 is Pareto index.

its simplicity, making analysis tractable and experiments Analysis We conduct a stochastic analysis of steady-
scalable. Our results reveal steady-state queues of

leastO(v/N) packets, whereV is the number of flows st%tte queuing in the overprovisioned buffer of a fully

. : utilized link with N flows. We show that the number of
Hence, no congestion control protocol is able to avo

. . ) WS arrivin i ime intervdl; T) is negligible in
losses at a fully utilized I|nkW|thaconstantbuffershared0 s af g outside time interval); T') is negligible
R comparison to the total number of flows. Therefore, we
by arbitrarily many flows.

. assume that all flows arrive within time interval 7).
Model ‘We model a stgady-lstatg scenario whére Then, we express queue sigzeencountered bf?het)h
flows share a bottleneck link with bitrate and a FIFO flow during steady-state time interva’; 2T) as:
(First-In First-Out) buffer. We denote arrival time of flow ’ '
i ast;, wherei = 1,..., N. Without loss of generality, G =q+i— b (4)
we assume; = 0. Average utilization of the link i/, D
where0 < U < 1. Each flow transmits packets of sise Where ¢, represents the queue size at tiriie i is

periodically at the same constant bitrateequal to: the number of packets that have arrived during time
U.C interval [T; T+t;), and% denotes the number of packets
A (1) transmitted into the link during this intervél’; T + t;).
o Let A(i) denote the probability that theth flow
Hence, subsequen_t packets within any flow are separatel, nters a steady-state queue longer iharThen,
by the same time interval applying the Central Limit Theorem, we expre#§)
T_ N-5 N-D ) as:

| vieo U o) = 2 (1t -2 ©)
where D is per-packet transmission time. 2 Aw\ﬁ

R:
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Fig. 1. Probability that the steady-state queue encountered by a flbig. 2. Steady-state queue size encountered by the top 1% flows in
is longer than Q = 10 packets (fully utilized link with 1,000 flowsthe overprovisioned buffer of a fully utilized link with Exponential
overprovisioned buffer, and various interarrival time distributions). flow interarrival times.

where Ay, is a coefficient associated with the interarrivdior Exponential flow interarrival times. This and our
time distribution; 4, equalsv2, /2, and 2 other experiments are generally consistent with the above

k(k—2)
respectively for the considered Exponentlal Umfornjiheoret'cal conclusion that steady-state queuing in the
overprovisioned buffer of a fully utilized link is at least

and Pareto distributions. Figure 1 shows profile® @}
for N = 1,000 and Q@ = 10 packets. We representO(\/_N)' )

the probability of a steady-state queue longer tigan DIS'CUSSIOIjl We eqused Iower bounds on steady-st.ate
as the ratio of the average number of flows expenenuﬂgeumg at highly multiplexed links under any congestion

a steady-state queue longer tharto the total number © ntrol protocol. Our results imply impossibility to avoid
of flows- packet loss at a fully utilized link with a constant buffer

size and arbitrarily many flows. In subsequent work [5],
=N Z 0(i). (6) we explore avoiding the losses by underutilizing the bot-
' tleneck link. We also investigate fully utilized links with
We derive lower min and upper max bounds on the small buffers and surprisingly show that loss rates under
steady-state queue size for the ®flows as: our ideally smooth congestion control have lower bounds
that are independent af. This suggests possibility of
in= LoAyvV N and = FEgAyVN. 7 . . .
@min = Loy @max = Fody (7) practical congestion control where small buffers provide
where Ly and Ey depend only on fractio of flows; the double benefit of short queues and bounded loss rates
Ly ~ 1.1 andEy ~ 1.6 for6 = 1%. Lower boundQ min at fully utilized links.
reveals impossibility to avoid packet losses at a fully
utilized link with a constant buffer and arbitrarily many
flows: [1] K.K. Ramakrishnan, R. Jain, “A Binary Feedback Scheme for
Theorem 1: The steady-state queue in the overprovi- Congestion Avoidance in Computer Networks with a Con-
. ) - . . nectionless Network Layer,” ifProceedings ACM SIGCOMM
sioned buffer of a fully utilized link is at leagt(v/' N) 1988 August 1988.
packets, wheréV is the number of flows sharing the link. [2] R. Jain, “A Delay-Based Approach for Congestion Avoidance
Simulations To validate the above bounds, we con-  inInterconnected Heterogeneous Computer NetworksXGivi
; ; i Computer Communications Revie®®(5), pp. 56-71, 1989.
duct simulations within our model. We varyy from [3] L. Brakmo, S. O'Malley, and L. Peterson, “TCP Vegas: New
100 to 5,000 flows. For each value of, we perform Techniques for Congestion Detection and AvoidancePio-
1,000 experiments with the following parameteis:= ceedings ACM SIGCOMM 199August 1994.
1, C = 100 Mbps, andS = 1,000 bytes (neithets [4] M. Podlesny and S. Gorinsky, "Multimodal Congestion Control

. . . . for Low Stable-State Queuing” ifProceedings |IEEE INFO-
nor C' affects queuing in our model). Our simulation  ~5\ 2007 May 2007

methodology allows us to capture the steady state exacilyy M. Podlesny and S. Gorinsky, “Lower Bounds on Queuing and
by looking at only2 N packets, or 2 packets per flow. Loss at Highly Multiplexed Links, Technical Report WUCSE-

Figure 2 reports analytical and experimental results 2007-42 Department of Computer Science and Engineering,
. Washington University in St. Louis, July 2007.
for the queue size encountered by the top 1% flows
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