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Introduction Smooth fair lossless transmission at
high bitrates is an aspiration for many explicit and delay-
driven congestion control protocols [1]–[4]. Potential
benefits of such transmission include short queues and
no data loss at bottleneck links. These properties are par-
ticularly important for interactive multimedia and other
applications that would suffer from excessive queuing
delays at shared network links.

In this paper, we present a model for investigat-
ing lower bounds on queuing under smooth congestion
control with overprovisioned buffers. We consider an
idealized protocol where all flows always transmit at
equal rates. The ideally smooth transmission does not
eliminate queuing altogether because packets of different
flows might arrive to a node simultaneously due to
asynchronous arrivals of the flows, which is intrinsic to
computer networks. A prominent feature of our model is
its simplicity, making analysis tractable and experiments
scalable. Our results reveal steady-state queues of at
leastO(

√
N) packets, whereN is the number of flows.

Hence, no congestion control protocol is able to avoid
losses at a fully utilized link with a constant buffer shared
by arbitrarily many flows.

Model We model a steady-state scenario whereN
flows share a bottleneck link with bitrateC and a FIFO
(First-In First-Out) buffer. We denote arrival time of flow
i as ti, wherei = 1, . . . , N . Without loss of generality,
we assumet1 = 0. Average utilization of the link isU ,
where0 < U ≤ 1. Each flow transmits packets of sizeS
periodically at the same constant bitrateR equal to:

R =
U · C

N
. (1)

Hence, subsequent packets within any flow are separated
by the same time intervalT :

T =
N · S
U · C =

N ·D
U

(2)

whereD is per-packet transmission time.

This pattern of packet transmissions is the smoothest
possible under asynchronous congestion control where
distributed senders of different flows do not deliberately
schedule packets to arrive at a shared link at non-
overlapping times. After the last flow arrives, the imper-
fect alignment of the flows creates a queue oscillation
pattern that repeats with periodT .

We consider three smooth distributions of flow interar-
rival times: Exponential, Uniform, and Pareto. All three
distributions have the same average value:

µ =
D

U
=

T

N
, (3)

i.e., the N flows are expected to arrive over a time
interval that has the same durationT as the period
of the steady-state queue oscillations. The variances of
the distributions are

(
T
N

)2
, 1

3

(
T
N

)2
, and 1

k(k−2)

(
T
N

)2

respectively, wherek = 2.1 is Pareto index.
Analysis We conduct a stochastic analysis of steady-

state queuing in the overprovisioned buffer of a fully
utilized link with N flows. We show that the number of
flows arriving outside time interval[0;T ) is negligible in
comparison to the total number of flows. Therefore, we
assume that all flows arrive within time interval[0;T ).
Then, we express queue sizeqi encountered by thei-th
flow during steady-state time interval[T ; 2T ) as:

qi = q0 + i− ti
D

(4)

where q0 represents the queue size at timeT , i is
the number of packets that have arrived during time
interval [T ; T +ti), and ti

D denotes the number of packets
transmitted into the link during this interval[T ;T + ti).

Let θ(i) denote the probability that thei-th flow
encounters a steady-state queue longer thanQ. Then,
applying the Central Limit Theorem, we expressθ(i)
as:

θ(i) =
1
2

(
1− erf

(
Q

Aψ

√
i

))
(5)
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Fig. 1. Probability that the steady-state queue encountered by a flow
is longer than Q = 10 packets (fully utilized link with 1,000 flows,
overprovisioned buffer, and various interarrival time distributions).

whereAψ is a coefficient associated with the interarrival

time distribution; Aψ equals
√

2,
√

2
3 , and

√
2

k(k−2)

respectively for the considered Exponential, Uniform,
and Pareto distributions. Figure 1 shows profiles ofθ(i)
for N = 1, 000 and Q = 10 packets. We represent
the probability of a steady-state queue longer thanQ
as the ratio of the average number of flows experiencing
a steady-state queue longer thanQ to the total number
of flows:

θ =
1
N

N∑

i=1

θ(i). (6)

We derive lowerQmin and upperQmax bounds on the
steady-state queue size for the topθ flows as:

Qmin = LθAψ

√
N and Qmax = EθAψ

√
N. (7)

whereLθ and Eθ depend only on fractionθ of flows;
Lθ ≈ 1.1 andEθ ≈ 1.6 for θ = 1%. Lower boundQmin
reveals impossibility to avoid packet losses at a fully
utilized link with a constant buffer and arbitrarily many
flows:

Theorem 1: The steady-state queue in the overprovi-
sioned buffer of a fully utilized link is at leastO(

√
N)

packets, whereN is the number of flows sharing the link.
Simulations To validate the above bounds, we con-

duct simulations within our model. We varyN from
100 to 5,000 flows. For each value ofN , we perform
1,000 experiments with the following parameters:U =
1, C = 100 Mbps, andS = 1,000 bytes (neitherS
nor C affects queuing in our model). Our simulation
methodology allows us to capture the steady state exactly
by looking at only2N packets, or 2 packets per flow.

Figure 2 reports analytical and experimental results
for the queue size encountered by the top 1% flows
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Fig. 2. Steady-state queue size encountered by the top 1% flows in
the overprovisioned buffer of a fully utilized link with Exponential
flow interarrival times.

for Exponential flow interarrival times. This and our
other experiments are generally consistent with the above
theoretical conclusion that steady-state queuing in the
overprovisioned buffer of a fully utilized link is at least
O(
√

N).
Discussion We exposed lower bounds on steady-state

queuing at highly multiplexed links under any congestion
control protocol. Our results imply impossibility to avoid
packet loss at a fully utilized link with a constant buffer
size and arbitrarily many flows. In subsequent work [5],
we explore avoiding the losses by underutilizing the bot-
tleneck link. We also investigate fully utilized links with
small buffers and surprisingly show that loss rates under
our ideally smooth congestion control have lower bounds
that are independent ofN . This suggests possibility of
practical congestion control where small buffers provide
the double benefit of short queues and bounded loss rates
at fully utilized links.
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