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Abstract—In explicit or delay-driven congestion control, a
common objective is to sustain high throughput without long
queues and large losses at the bottleneck link of the network
path. Congestion control protocols strive to achieve this goal
by transmitting smoothly in the steady state. The discovery of
the appropriate steady-state transmission rates is a challenging
task in itself and typically introduces additional queuing and
losses. Seeking insights into the steady-state profiles of queuing
and loss achievable by real protocols, this paper presents an
AIST (Asynchronous arrivals with Ideally Smooth Transmission)
model that abstracts away transient queuing and losses related to
discovering the path capacity and redistributing it fairly among
the packet flows on the bottleneck link. In AIST, the flows arrive
asynchronously but transmit their packets at the same constant
rate in the steady state. For the link with an overprovisioned
buffer, our queuing-theoretic analysis and simulations for differ-
ent smooth distributions of packet interarrival times agree that
queuing under AIST with the target utilization of 1 is on the
order of the square root of N , where N is the number of flows.
With small buffers, our simulations of AIST show an ability to
provide bounded loss rates regardless of the number of flows.

I. INTRODUCTION

Smooth fair lossless transmission at high rates has been
an aspiration for many explicit [1]–[6] and delay-driven [7]–
[10] congestion control protocols. Smoothness of transmission
is particularly important for interactive multimedia and other
delay-sensitive applications that would suffer from excessive
queuing delays at network links. However, since discovery of a
fair sending rate is fraught with packet bursts and other causes
of link queuing, smooth transmission conflicts with prompt
response to changes in network conditions [11], [12].

Smooth transmission is also relevant to link buffer siz-
ing [13]–[20], which recently attracted significant attention.
In the context of TCP (Transmission Control Protocol) con-
gestion control [21], various proposals disagree on how to size
the buffer with respect to the number of flows sharing the link.
Arguing that aggregate oscillations of TCP traffic subside as
the number of flows increases, one view maintains that a small
buffer suffices for a highly multiplexed link [14], even if the
buffer accommodates only up to 20 packets [16]. However,
when the network path restricts each flow to less than several

packets per RTT (round-trip time), TCP suffers from high
loss rates and frequent retransmission timeouts [22]. Hence,
alternative guidelines size the buffer proportionally to the
number of flows [13], i.e., argue for an even larger buffer than
the traditionally recommended capacity-delay product [23].
The divergent opinions prompted proposals of multiple-buffer
forwarding schemes that set the buffer sizes differently for
different applications [24], [25]. Furthermore, some studies
propose new congestion control protocols for networks with
small buffers [26].

The lack of agreement on many issues in congestion control
has sound reasons. Practical congestion control protocols tend
to be multimodal and complex, e.g., they incorporate smart
strategies for packet acknowledgments [27]–[29]. Besides,
performance of congestion-control protocols depends on un-
derlying Internet link technologies [30]. Due to these com-
plexities, precise comprehensive analyses of real congestion-
control protocols are difficult. For the same reason, experimen-
tal evaluations face serious scalability challenges [31], [32].
In particular, while even a single packet-level simulation of
transient and steady states for a highly multiplexed link might
consume long time, studies of congestion control protocols
rarely report reliable results for more than a few hundred flows.

This paper shifts the research focus from protocol engineer-
ing to network science and presents an AIST (Asynchronous
arrivals with Ideally Smooth Transmission) model to gain
insights into steady-state queuing and loss profiles that real
congestion control protocols can strive to achieve. AIST ab-
stracts away transient queuing and losses related to discovering
the path capacity and redistributing this capacity fairly among
the packet flows on the bottleneck link. In AIST, the flows
arrive asynchronously and transmit at the same constant rate
in the steady state. Such ideally smooth transmissions do
not eliminate queuing altogether because packet arrivals from
different flows in the steady state are asynchronous [33]. For
example, even if the constant-rate flows underutilize the link
on average, a queue arises when packets from multiple flows
arrive to the link at the same time. The asynchrony of packet
arrivals constitutes the main difference between AIST and the
perfect TDM (Time Division Multiplexing) which avails the978-1-4673-1298-1/12$31.00 c© 2012 IEEE



link to each packet immediately upon the packet arrival. Such
asynchrony is a ubiquitous property of real congestion control
protocols.

Simplicity is a prominent aspect of AIST and renders
tractable analysis and scalable experiments. In particular,
our simulation methodology exactly captures the steady-state
queuing for N concurrent flows by examining only 2N pack-
ets. The low overhead enables us to assess expected steady-
state performance reliably by conducting extensive simulations
with up to 5,000 concurrent flows and repeating each experi-
ment 1,000 times.

Our modeling and analysis of AIST are not only novel but
also useful for practical congestion control. While simplifying
some aspects (e.g., packet size variability) of secondary im-
portance for the studied queuing problem, the AIST model
focuses on the time intervals where the number of flows
is constant (flows arrive/leave on a longer time scale than
gaps between consecutive packets of a flow), i.e., those time
intervals where real congestion-control protocols are most
effective in performing the queue management. Furthermore,
the AIST assumptions of FIFO (First-In First-Out) packet
queuing and constant-capacity link represent actual Internet
topologies accurately. Our study shows that queuing under
AIST at the fully utilized link with the overprovisioned buffer
is O(

√
N). This result suggests that bounded queuing delay

without packet discard at a fully utilized link is an unreal-
istic goal for a practical congestion control protocol if the
number of flows is arbitrarily high, and the protocol does
not incorporate a synchronization mechanism that deliberately
avoids bursty arrivals of packets from different flows to the
link. Nevertheless, our work also implies that the protocol
can overcome this limitation by decreasing the link utilization
as the number of flows grows. Among its other results, our
paper indicates an exciting option of bounded loss rates at
fully utilized links with small buffers.

The rest of the paper is organized as follows. Section II
defines our AIST model. Section III analyzes queuing under
AIST in overprovisioned buffers. Section IV supplements the
analysis with extensive simulations. Section V reports loss
rates under AIST with small buffers. Section VI discusses the
role of the packet size and link capacity in the AIST model.
Finally, section VII concludes the paper with a summary of
its contributions.

II. AIST MODEL

AIST models the steady state of a link where the number
of packet flows does not change (the steady state ends when
one of the flows terminates, or an extra flow begins). N
denotes this constant number of flows. All flows use the same
fixed packet size S. The link has a FIFO buffer and constant
capacity C. Transmission delay D of a packet refers to the
amount of time spent on transmitting the packet into the link.
With equal packet sizes, all packets have the same transmission
delay

D =
S

C
. (1)

Hence, AIST measures time in units of packet transmission
delay, or in packets for short. In particular, if di refers to the
actual time that a packet of flow i waits in the buffer for its
turn to be transmitted into the link, our model captures the
queuing with queuing delay qi expressed in packets as

qi =
di
D
. (2)

Time 0 denotes the moment when all N flows complete
a transient phase and start transmitting their packets at the
same constant rate. Arrival time ti refers to the time when the
first packet of flow i arrives to the link during the steady-
transmission interval (i = 0, . . . , N − 1). Without loss of
generality, we assume that time t0 = 0 represents the arrival
time of such first packet from flow 0. The other N−1 flows are
also numbered in the order of their first packet arrivals during
the steady-transmission interval. We express the respective
packet arrival times as

ti+1 = ti + δi (3)

where i = 0, . . . , N−2, and δi represents the interarrival time
between the first packets of flows i and i+1 during the steady-
transmission interval (δi ≥ 0). The distribution of the packet
interarrival times has mean µ = D

U and variance σ2 = βµ2

where β is a fixed factor representing the smoothness of the
interarrival process. We refer to parameter U of the model as
the target utilization of the link, 0 < U ≤ 1.

Throughout the steady state, the transmission pattern within
each flow remains stable with consecutive packets arriving to
the link with transmission period T defined as

T = max

{
tN−1 + δN−1,

N ·D
U

}
, (4)

T = max

{
N−1∑

i=0

δi,
N ·D
U

}
. (5)

The maximum function in equation 5 ensures the
congestion-control property of limited queuing delay even
when U = 1. Hence, the AIST model represents both deter-
ministic (bounded queuing delay even at a fully utilized link)
and random (unsynchronized packet transmission by different
flows) features of real congestion control protocols.

In AIST, deterministic target utilization U of the link serves
as an upper limit on random actual utilization R which is equal
to

R =
N ·D
T

. (6)

In scenarios with T = N ·D
U (i.e., when

∑N−1
i=0 δi ≤ N ·D

U ), the
actual utilization matches the target utilization: R = U . When
T > N ·D

U (i.e., in scenarios with
∑N−1

i=0 δi >
N ·D
U ), the actual

utilization is lower than the target utilization: 0 < R < U ≤ 1.
We examine both overprovisioned and small buffers. While

the overprovisioned buffer is large enough to store and forward
all arriving packets without loss, packet losses are possible
with small buffers. The main metric with the overprovisioned
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buffer is queuing delay in packets (equation 2). We quantify
performance in small-buffer settings with a loss rate defined
as a fraction of packets discarded in the steady state due to
buffer overflow.

III. ANALYSIS FOR OVERPROVISIONED BUFFERS

To analyze queuing under AIST in overprovisioned buffers,
sections III-A and III-B apply different queuing-theoretic
techniques to the cases of U = 1 and U < 1 respectively.

A. Target utilization of 1

When the target utilization equals 1 (U = 1), queuing
scenarios of AIST can be classified into two categories:

• Fully utilized link (R = 1 and T = N · D) where any
period of length T during the steady-transmission interval
sees arrivals of exactly N packets that consume exactly
time T to be transmitted into the link. With the fully
utilized link, the queuing converges to a periodic pattern
by time T . Figure 1a illustrates such periodic queuing
pattern.

• Underutilized link (R < 1 and T > N · D) where any
period of length T during the steady-transmission interval
sees arrivals of exactly N packets that take strictly less
time than T to be transmitted into the link. Whatever
queuing delay is at time 0, the link underutilization
eventually drains any queuing delay inherited from the
transient phase. The queuing converges to a periodic
pattern determined exclusively by packets that arrive
during the steady-transmission interval. In figure 1b,
time interval [2T ; 3T ) represents such emerged periodic
pattern of queuing at the underutilized link.

With either fully utilized or underutilized link the period of
the stable queuing pattern equals T . Let τ be such a multiple of
T that the queuing converges to its periodic pattern by time τ .
Then, the following expression serves as a lower bound on
queuing delay qi of the packet that arrives from flow i during
period [τ ; τ + T ):

qi ≥ h+ i− ti
D

(7)

where h denotes the queuing delay at time τ , time ti is∑i−1
j=0 δj , and ti

D represents the number of packets that the link
is capable of transmitting during time interval [τ ; τ+ti). With
the underutilized link, the right-hand side of inequality 7 can
take negative values. With the fully utilized link, inequality 7
is an equation, i.e., h+i− ti

D captures queuing delay qi exactly.
Because we are primarily interested in low bounds on

queuing delay, we assume h = 0 and express lower bound
li on queuing delay qi as

li = i− ti
D
. (8)

Whereas all packet interarrival times δj are from the same
distribution, and the analysis is for highly multiplexed links
with large values of N , the Central Limit Theorem establishes
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(b) Underutilized link with T > N ·D.
Fig. 1. Examples of emerging periodic queuing patterns in the overprovi-
sioned buffer under AIST with N = 1,000, S = 1,000 bytes, C = 100 Mbps,
and U = 1 (i.e., N ·D = 80 ms).

that ti follows the normal distribution with mean α and
variance ω2:

α = iµ and ω2 = iσ2 (9)

where µ and σ2 are respectively the mean and variance of the
interarrival time distribution.

Since ti is normally distributed, we use equations 8 and 9
to derive probability θ(i) of li > Q as

θ(i) = P [li > Q] =
1

2

(
1− erf

(
(Q− i)D + iµ

σ
√
2i

))
(10)

where erf is the error function. Because µ = D when U = 1,
and σ is proportional to µ, we simplify equation 10 as

θ(i) =
1

2

(
1− erf

(
Q√
2βi

))
(11)

where β is the interarrival process smoothness.
Using p to represent the probability that the queuing delay

of a packet exceeds Q, we express this probability as

p =
1

N

N−1∑

i=0

P [qi > Q]. (12)
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Fig. 2. Sample single periods of stable steady-state queuing in the overprovisioned buffer of a fully utilized link under AIST with N = 1,000, S =
1,000 bytes, C = 100 Mbps, U = 1, and T = N ·D = 80 ms.
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Fig. 3. Cumulative distributions of steady-state queuing delay in the overprovisioned buffer under AIST with the target utilization of 1 for different numbers
of flows: S = 1,000 bytes, C = 100 Mbps, and U = 1.

Because θ(i) is a nonnegative increasing function, we bound
p from below as

p ≥ 1

N

N−1∑

i=0

P [li > Q] ≥ 1

N

N−1∑

i= 2N
3

θ (i) ≥
θ
(
2N
3

)

3
, (13)

p ≥
1− erf

(
Q√
4βN

3

)

6
. (14)

To establish a lower bound on queuing delay for the top p
packets, we define λp to be such that

erf

(
λp

√
3

4

)
= 1− 6p. (15)

λp depends only on p, i.e., the fraction of packets. For
example, λ 1% ≈ 1.6 and λ 5% ≈ 0.8 for the top 1% and
5% packets respectively. Applying inequality 14, we express
lower bound Qmin on queuing delay under AIST for the top
p packets as

Qmin = λp

√
βN (16)

By deriving equation 16, we have proved the following
result:

Theorem 1: Queuing delay for a fixed fraction of packets
in the overprovisioned buffer under AIST with the target
utilization of 1 is bounded from below by O(

√
N) where N

is the number of flows sharing the link.

Theorem 1 has important implications for practical con-
gestion control. Similarly to our AIST model, real conges-
tion control protocols do not incorporate any synchronization
mechanisms that deliberately avoid bursty arrivals of packets
from multiple flows to the bottleneck link on a smaller time
scale than the RTTs of the flows. Unless a real congestion
control protocol with the target utilization of 1 incorporates
such a synchronization mechanism, Theorem 1 suggests that
the congestion control protocol cannot provide bounded queu-
ing delay without packet discard if the number of flows can
be arbitrarily large.

B. Target utilization below 1
When the target utilization of AIST is smaller than 1

(U < 1), the actual utilization is always below 1 (R < 1),
and we use classical queuing theory to characterize steady-
state queuing in the overprovisioned buffer of the underutilized
link. In particular, for the Exponential distribution of the
packet interarrival times, we apply the M/D/1 steady-state
analysis [34] to express probability p that the queuing delay
experienced by a packet exceeds Q packets:

p = 1− (1−R)
Q∑

j=0

((Q− j)R)j e−(Q−j)R

j!
. (17)

In the particular context of AIST, actual utilization R is at
most the target utilization, i.e., R ≤ U . Our analysis relies on
the observation that the sum of independent and identically
distributed (i.i.d.) exponential random variables adheres to the
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Fig. 4. Analytic and simulation results for the steady-state queuing delay experienced by the top 1% packets in the overprovisioned buffer under AIST with
the target utilization of 1: S = 1,000 bytes, C = 100 Mbps, and U = 1.
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Fig. 5. Analytic and simulation results for the steady-state queuing delay experienced by the top 5% packets in the overprovisioned buffer under AIST with
the target utilization of 1: S = 1,000 bytes, C = 100 Mbps, and U = 1.

Erlang distribution [35]. The actual utilization equals U in
scenarios with T = N ·D

U which occur with probability

P [R = U ] =
γ(N,N)

(N − 1)!
(18)

where γ(·, ·) is the lower incomplete gamma function. The
actual utilization is lower than the target utilization in scenarios
with T > N ·D

U . In such scenarios, T attains specific value x
with probability

P [T = x] =
xN−1e−

x
µ

µN (N − 1)!
. (19)

Thus, we derive average value R of the actual utilization as

R =

(
γ(N,N) + N

N−1

(
Γ(N,N)−NN−1e−N

))
U

(N − 1)!
(20)

where Γ(·, ·) is the upper incomplete gamma function.

IV. SIMULATIONS FOR OVERPROVISIONED BUFFERS

To validate the above analytic conclusions for overprovi-
sioned buffers, this section reports packet-level simulations of
AIST. While the focus of our paper is on minimum queuing
achievable with AIST in the steady state, we simulate settings
where the steady-transmission interval does not inherit any
queuing from the transient phase, i.e., queuing delay at time 0
is 0. In these minimum-queuing settings the stable periodic
queuing pattern of AIST always emerges by time T with either

fully utilized or underutilized link. Thus, each simulation run is
for time interval [0; 2T ) where [0;T ) is a warm-up stage with
N packets arriving at times ti, i = 0, . . . , N−1. By recording
the queuing delays of the N packets arriving at times T + ti
during period [T ; 2T ), we measure the cumulative distribution
of the steady-state queuing delay under AIST.

In our simulations, we consider the following 3 smooth
instances of the packet interarrival distribution:

• Exponential distribution from a Poisson process with
average arrival rate 1

µ and smoothness β = 1;
• Uniform distribution between 0 and 2µ with smoothness

β = 1
3 ;

• Pareto distribution with index k = 4 and smoothness
β = 1

k(k−2) .
The simplicity of AIST enables extensive simulations.

Whereas each simulation run examines only 2N packets (i.e.,
only 2 packets per flow), the simulations capture the expected
queuing behavior with high certainty by performing 1,000
experiments for each examined set of parameter settings.
Unless explicitly stated otherwise, the parameters take the
following default values: N = 1,000, S = 1,000 bytes, C =
100 Mbps, and U = 1 (i.e., N ·D = 80 ms). Figure 2 illustrates
patterns of the stable steady-state queuing for these default
settings in scenarios where T = N · D (i.e., fully utilized
link).

We start the simulations with experiments where the target
utilization is equal to 1. To evaluate the dependence of the
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Fig. 6. Cumulative distributions of the steady-state queuing delay under AIST in the overprovisioned buffer for different target utilizations: N = 1,000, S =
1,000 bytes, and C = 100 Mbps.
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Fig. 7. Impact of the target utilization on the steady-state queuing in the overprovisioned buffer under AIST.

steady-state queuing on the number of flows, we vary N
from 100 to 5,000. Figure 3 shows that larger values of N
consistently produce longer queues. In particular, while the
bottom 10% packets experience no queuing at all with 100
flows and Exponential packet interarrival times, queuing delay
for this percentile is 8 packets with 5,000 flows.

Figure 4 reports analytic and simulation results for the
queuing delay experienced by the top 1% packets. The experi-
mental results for all 3 packet interarrival time distributions are
consistent with the plotted O(

√
N) lower bounds that depict

equation 16. Figure 5 shows a qualitatively similar agreement
between the analysis and simulations for the top 5% packets.

Now, we explore whether reducing the target utilization
mitigates the above concerns about queuing scalability with
respect to the number of flows. In the next set of experiments,
U varies from 0.5 to 1. Figure 6 demonstrates that decreasing
the target utilization subdues the steady-state queuing sub-
stantially. For instance, the bottom 80% packets experience
no queuing at all with the target utilization of 0.5. Figure 7
quantifies the significant reductions of the queuing delay as
the target utilization decreases. With U = 1, the queuing delay
for the top 1% packets is 63, 42, 26 packets under the Expo-
nential, Uniform, Pareto packet interarrival times respectively.
Decreasing U to 0.75 and further to 0.5 reduces the queuing
delay to 8, 4, 0 packets and 4, 2, 0 packets respectively. The
results also reveal that the decrease of the target utilization
helps most dramatically under the Pareto distribution. Our
findings justify the common practice of operating network

links with average utilization of at most 0.5 [36].
In figure 8, we focus on experiments with Exponential

interarrival times. For each simulation run, we record actual
utilization R. Based on the recorded R values, figure 8a plots
average actual utilization R as a function of target utilization
U and demonstrates that the average actual utilization under
AIST is only slightly smaller than the target utilization. Also
using these individual R values as input to equation 17, we
compute distributions of steady-state queuing delay for the tar-
get utilizations of 0.99, 0.95, 0.90, 0.75, 0.5. While figures 8b
through 8f plot the respective equation-based distributions as
dashed lines, the solid lines in the graphs depict the queuing
delay distributions measured directly during the simulations
(due to computational challenges presented by equation 17, we
report the theoretical results for queuing delays up to around
30 packets). Whereas the simulation and analytic lines are
closely aligned in general, their noteworthy deviations occur
for top packet percentiles with U = 0.99.

V. LOSS RATES WITH SMALL BUFFERS

Our derived and validated result of the O(
√
N) steady-state

queuing in the overprovisioned buffer under AIST with the
target utilization of 1 suggests that avoidance of packet losses
with a constant buffer is an unrealistic objective for a real
congestion control protocol if the number of flows is arbitrarily
large (and the protocol does not incorporate a synchronization
mechanism that deliberately avoids bursty arrivals of packets
from different flows to the bottleneck link). In this section, we
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Fig. 8. Analytic and simulation results for the steady-state queuing delay in the overprovisioned buffer under AIST with Exponential interarrival times for
different target utilizations: N = 1,000, S = 1,000 bytes, and C = 100 Mbps.

simulate AIST with small buffers that accommodate either 10
or 20 packets.

First, we experiment in settings with U = 1 and vary the
number of flows from 100 to 5,000. Figure 9 plots steady-state
loss rates with Exponential, Uniform, and Pareto interarrival
times. For low values of N , the loss rates increase quickly as
N grows. They stabilize after N becomes sufficiently large.
The bounded nature of the loss rates opens an exciting prospect
that a practical congestion control protocol with the target
utilization of 1 can also provide bounded loss rates at links
with small buffers.

Then, we simulate setups with the target utilizations be-
low 1. While the loss rate for Exponential interarrival times is
the highest among the 3 distributions, this loss rate stabilizes
at around 4% and 2% with U = 1 for the 10-packet and 20-
packet buffer respectively. If such losses are deemed as too
high, reducing the target utilization helps once again: figure 10
shows prompt dramatic reductions in the loss rates for all 3
distributions of interarrival times as U decreases from 1 to 0.5.

VI. ROLE OF THE PACKET SIZE AND LINK CAPACITY

So far, our study focused on the N and U parameters. In
this section, we discuss the role of the other two parameters
of AIST: packet size S and link capacity C. According
to equation 1, the S and C parameters affect transmission
delay D. Because AIST measures time in units of transmission
delay, and the interarrival time distributions and transmission
period T are proportional to D, the S and C parameters do
not affect AIST queuing behaviors (queuing delays measured

in packets) at all. Hence, the AIST model does not raise any
concerns about the ability of real congestion control to scale
well with the packet size and link capacity.

VII. CONCLUSION

In this paper, we presented and evaluated the AIST model
where all flows transmit their packets at the same constant rate
in the steady state. The smooth transmission causes queuing at
a link due to the asynchrony of packet arrivals from multiple
flows, which is a ubiquitous property of real congestion control
protocols. Our innovative analysis and simulations examined
queuing and loss under AIST with different link buffers.

While simplicity is a prominent aspect of AIST, our simula-
tion methodology exactly captured the steady-state queuing for
N concurrent flows by examining only 2N packets. The low
overhead enabled us to assess the steady-state performance
with high certainty through extensive experiments with up
to 5,000 concurrent flows and 1,000 runs per experimental
setting.

In the simulations, we considered 3 smooth distributions
of packet interarrival times. In addition to the Exponential
distribution which might be the most realistic assumption for
the packet interarrival times, we also examined AIST with the
smoother Uniform and Pareto distributions.

Our main result is for AIST with the target utilization
of 1. The respective analysis and simulations agree that the
steady-state queuing delay experienced by a fixed fraction of
packets in the overprovisioned buffer is O(

√
N). Our analysis

and experiments for U < 1 showed that reducing the target
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Fig. 9. Steady-state loss rates under AIST with small buffers and target utilization of 1: S = 1,000 bytes, C = 100 Mbps, and U = 1.
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Fig. 10. Impact of the target utilization on the steady-state loss rates under AIST with small buffers: N = 1,000, S = 1,000 bytes, and C = 100 Mbps.

utilization alleviates the concerns about queuing scalability
with respect to the number of flows. Also, the simulations
of AIST with small buffers and target utilization of 1 revealed
bounded steady-state loss rates.

The practical utility of AIST is in its insights relevant
to real congestion control protocols. Theorem 1 implies that
avoidance of packet losses with a constant buffer can be an
unrealistic objective for a real congestion control protocol if
the number of flows is arbitrarily large (and the protocol does
not incorporate a synchronization mechanism that deliberately
avoids bursty arrivals of packets from different flows to
the bottleneck link). Our study of AIST also indicates that
the protocol can overcome this limitation by decreasing the
target utilization as the number of flows grows. An exciting
alternative is to equip fully utilized network links with small
buffers and thereby provide bounded loss rates. Finally, the
AIST model does not reveal any limitations on scalability of
real congestion control in regard to the packet size or link
capacity.
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